
Xixian Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6135751/publications.pdf Version: 2024-02-01

Χινιανι Χιε

#	Article	IF	CITATIONS
1	Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresource Technology, 2017, 245, 1588-1602.	4.8	107
2	Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metabolic Engineering, 2016, 36, 10-18.	3.6	69
3	Systems metabolic engineering strategies for the production of amino acids. Synthetic and Systems Biotechnology, 2017, 2, 87-96.	1.8	56
4	Metabolic engineering of Escherichia coli for high-yield uridine production. Metabolic Engineering, 2018, 49, 248-256.	3.6	52
5	High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation. Metabolic Engineering, 2020, 62, 198-206.	3.6	51
6	High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering. Metabolic Engineering, 2018, 49, 287-298.	3.6	50
7	Improved Production of Tryptophan in Genetically Engineered <i>Escherichia coli</i> with TktA and PpsA Overexpression. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.	3.0	43
8	Effect of transport proteins on <scp>l</scp> -isoleucine production with the <scp>l</scp> -isoleucine-producing strain <i>Corynebacterium glutamicum</i> YILW. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1549-1556.	1.4	39
9	Modification of glycolysis and its effect on the production of <scp>l</scp> -threonine in <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1007-1015.	1.4	32
10	Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin. Applied Microbiology and Biotechnology, 2018, 102, 8753-8762.	1.7	32
11	Identification and application of a growth-regulated promoter for improving l-valine production in Corynebacterium glutamicum. Microbial Cell Factories, 2018, 17, 185.	1.9	31
12	Efficient fermentative production of l-theanine by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2020, 104, 119-130.	1.7	31
13	Twoâ€stage carbon distribution and cofactor generation for improving <scp>l</scp> â€threonine production of <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2019, 116, 110-120.	1.7	30
14	Enhancing l-Isoleucine Production by thrABC Overexpression Combined with alaT Deletion in Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 2013, 171, 20-30.	1.4	29
15	Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening. PLoS ONE, 2017, 12, e0176545.	1.1	28
16	Highly Efficient Production of <scp>l</scp> -Histidine from Glucose by Metabolically Engineered <i>Escherichia coli</i> . ACS Synthetic Biology, 2020, 9, 1813-1822.	1.9	27
17	Flux redistribution of central carbon metabolism for efficient production of <scp>l</scp> â€tryptophan in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2021, 118, 1393-1404.	1.7	27
18	Production of αâ€ketobutyrate using engineered <i>Escherichia coli</i> via temperature shift. Biotechnology and Bioengineering, 2016, 113, 2054-2059.	1.7	23

XIXIAN XIE

#	Article	IF	CITATIONS
19	CRISPRi-Based Dynamic Control of Carbon Flow for Efficient <i>N</i> -Acetyl Glucosamine Production and Its Metabolomic Effects in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 3203-3213.	2.4	22
20	Optimization of carbon source and glucose feeding strategy for improvement of L-isoleucine production by <i>Escherichia coli</i> . Biotechnology and Biotechnological Equipment, 2015, 29, 374-380.	0.5	19
21	Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of L-citrulline. Metabolic Engineering, 2021, 68, 220-231.	3.6	18
22	Reducing lactate secretion by IdhA Deletion in L-glutamate- producing strain Corynebacterium glutamicum GDK-9. Brazilian Journal of Microbiology, 2014, 45, 1477-1483.	0.8	16
23	A strategy for L-isoleucine dioxygenase screening and 4-hydroxyisoleucine production by resting cells. Bioengineered, 2018, 9, 72-79.	1.4	16
24	Highly Efficient Production of <i>N</i> -Acetyl-glucosamine in <i>Escherichia coli</i> by Appropriate Catabolic Division of Labor in the Utilization of Mixed Glycerol/Glucose Carbon Sources. Journal of Agricultural and Food Chemistry, 2021, 69, 5966-5975.	2.4	16
25	Modification of histidine biosynthesis pathway genes and the impact on production of l-histidine in Corynebacterium glutamicum. Biotechnology Letters, 2013, 35, 735-741.	1.1	15
26	Multiple-step chromosomal integration of divided segments from a large DNA fragment via CRISPR/Cas9 in <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 81-90.	1.4	15
27	Strategy for enhancing adenosine production under the guidance of transcriptional and metabolite pool analysis. Biotechnology Letters, 2015, 37, 1361-1369.	1.1	13
28	Efficient production of α-ketoglutarate in the gdh deleted Corynebacterium glutamicum by novel double-phase pH and biotin control strategy. Bioprocess and Biosystems Engineering, 2016, 39, 967-976.	1.7	13
29	Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine– and L-Valine–Producing Corynebacterium glutamicum Strains. Journal of Microbiology and Biotechnology, 2018, 28, 1916-1927.	0.9	13
30	Low-molecular-mass purine nucleoside phosphorylase: characterization and application in enzymatic synthesis of nucleoside antiviral drugs. Biotechnology Letters, 2011, 33, 1107-1112.	1.1	12
31	Enhancing the supply of oxaloacetate for l-glutamate production by pyc overexpression in different Corynebacterium glutamicum. Biotechnology Letters, 2013, 35, 943-950.	1.1	9
32	Transcriptomic and metabolomics analyses reveal metabolic characteristics of L-leucine- and L-valine-producing Corynebacterium glutamicum mutants. Annals of Microbiology, 2019, 69, 457-468.	1.1	9
33	Comparative metabolomic analysis reveals different evolutionary mechanisms for branched-chain amino acids production. Bioprocess and Biosystems Engineering, 2020, 43, 85-95.	1.7	9
34	Metabolic engineering of <i>Escherichia coli</i> for efficient osmotic stressâ€free production of compatible solute hydroxyectoine. Biotechnology and Bioengineering, 2022, 119, 89-101.	1.7	9
35	Double deletion of <i>murA</i> and <i>murB</i> induced temperature sensitivity in <i>Corynebacterium glutamicum</i> . Bioengineered, 2019, 10, 561-573.	1.4	8
36	Betaine supplementation improved l-threonine fermentation of Escherichia coli THRD by upregulating zwf (glucose-6-phosphate dehydrogenase) expression. Electronic Journal of Biotechnology, 2019, 39, 67-73.	1.2	8

XIXIAN XIE

#	Article	IF	CITATIONS
37	Pathway engineering of Escherichia coli for one-step fermentative production of L-theanine from sugars and ethylamine. Metabolic Engineering Communications, 2020, 11, e00151.	1.9	8
38	Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain. Journal of Biotechnology, 2016, 220, 64-65.	1.9	7
39	Identification and application of a novel strong constitutive promoter in Corynebacterium glutamicum. Annals of Microbiology, 2018, 68, 375-382.	1.1	7
40	Mutation of genes for cell membrane synthesis in <i>Corynebacterium glutamicum</i> causes temperature-sensitive trait and promotes L-glutamate excretion. Biotechnology and Biotechnological Equipment, 2020, 34, 38-47.	0.5	7
41	Structure–activity relationship of a cold-adapted purine nucleoside phosphorylase by site-directed mutagenesis. Enzyme and Microbial Technology, 2012, 51, 59-65.	1.6	5
42	Characterization of a recombinant cold-adapted purine nucleoside phosphorylase and its application in ribavirin bioconversion. World Journal of Microbiology and Biotechnology, 2011, 27, 1175-1181.	1.7	2