Sabina Leonelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6135616/publications.pdf

Version: 2024-02-01

90 3,160 30 48 papers citations h-index g-index

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Process epistemology in the COVID-19 era: rethinking the research process to avoid dangerous forms of reification. European Journal for Philosophy of Science, 2022, 12, 20.	0.6	5
2	Reframing the environment in data-intensive health sciences. Studies in History and Philosophy of Science Part A, 2022, 93, 203-214.	0.6	13
3	Open Science and Epistemic Diversity: Friends or Foes?. Philosophy of Science, 2022, 89, 991-1001.	0.5	9
4	Where health and environment meet: the use of invariant parameters in big data analysis. SynthÃ^se, 2021, 198, 2485-2504.	0.6	16
5	From FAIR data to fair data use: Methodological data fairness in health-related social media research. Big Data and Society, 2021, 8, 205395172110103.	2.6	21
6	Organisms in Experimental Research. Historiographies of Science, 2021, , 265-289.	0.2	1
7	Actionable data for precision oncology: Framing trustworthy evidence for exploratory research and clinical diagnostics. Social Science and Medicine, 2021, 272, 113760.	1.8	11
8	Mobilizing the Transnational History of Knowledge Flows. COVID-19 and the Politics of Research at the Borders. History and Technology, 2021, 37, 125-146.	0.3	6
9	The changing climates of global health. BMJ Global Health, 2021, 6, e005442.	2.0	16
10	Experimenting with co-development: A qualitative study of gene drive research for malaria control in Mali. Social Science and Medicine, 2021, 276, 113850.	1.8	8
11	Open science, data sharing and solidarity: who benefits?. History and Philosophy of the Life Sciences, 2021, 43, 115.	0.6	19
12	How to choose your research organism. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2020, 80, 101227.	0.8	39
13	The Ontologies Community of Practice: A CGIAR Initiative for Big Data in Agrifood Systems. Patterns, 2020, 1, 100105.	3.1	53
14	How to build an effective research network: lessons from two decades of the GARNet plant science community. Journal of Experimental Botany, 2020, 71, 6881-6889.	2.4	0
15	Learning from Data Journeys. , 2020, , 1-24.		15
16	From Dirty Data to Tidy Facts: Clustering Practices in Plant Phenomics and Business Cycle Analysis., 2020,, 79-101.		7
17	Intellectual directions for History and Philosophy of the Life Sciences, 2019–2023. History and Philosophy of the Life Sciences, 2019, 41, 28.	0.6	1
18	Data — from objects to assets. Nature, 2019, 574, 317-320.	13.7	51

#	Article	IF	Citations
19	What distinguishes data from models?. European Journal for Philosophy of Science, 2019, 9, 22.	0.6	32
20	The challenges of big data biology. ELife, 2019, 8, .	2.8	55
21	â€`Extreme' organisms and the problem of generalization: interpreting the Krogh principle. History and Philosophy of the Life Sciences, 2018, 40, 65.	0.6	28
22	Rethinking Reproducibility as a Criterion for Research Quality. Research in the History of Economic Thought and Methodology, 2018, , 129-146.	0.1	53
23	Concealment and discovery: The role of information security in biomedical data re-use. Social Studies of Science, 2018, 48, 663-690.	1.5	13
24	Organisms in Experimental Research. Historiographies of Science, 2018, , 1-25.	0.2	2
25	The Time of Data: Timescales of Data Use in the Life Sciences. Philosophy of Science, 2018, 85, 741-754.	0.5	13
26	Assembling Biomedical Big Data. , 2018, , 317-337.		3
27	Introduction: Open Data and Africa. Data Science Journal, 2018, 17, .	0.6	2
28	Data Shadows. Science Technology and Human Values, 2017, 42, 191-202.	1.7	50
29	Beyond the digital divide: Towards a situated approach to open data. Science and Public Policy, 2017, 44, 464-475.	1.2	74
30	Data management and best practice for plant science. Nature Plants, 2017, 3, 17086.	4.7	38
31	How Does One "Open―Science? Questions of Value in Biological Research. Science Technology and Human Values, 2017, 42, 280-305.	1.7	70
32	â€~\$100 Is Not Much To You': Open Science and neglected accessibilities for scientific research in Africa. Critical Public Health, 2017, 27, 39-49.	1.4	26
33	Managing the transition to open access publishing: a psychological perspective. Prometheus, 2017, 35, .	0.2	3
34	Global Data Quality Assessment and the Situated Nature of "Best―Research Practices in Biology. Data Science Journal, 2017, 16, .	0.6	16
35	The disruptive potential of data publication. Notes and Records of the Royal Society, 2016, 70, 393-395.	0.1	8
36	Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare. PLoS ONE, 2016, 11, e0158791.	1.1	41

#	Article	IF	Citations
37	How Do Scientists Define Openness? Exploring the Relationship Between Open Science Policies and Research Practice. Bulletin of Science, Technology and Society, 2016, 36, 128-141.	1.1	69
38	Open data: curation is under-resourced. Nature, 2016, 538, 41-41.	13.7	8
39	Repertoires: A post-Kuhnian perspective on scientific change and collaborative research. Studies in History and Philosophy of Science Part A, 2016, 60, 18-28.	0.6	93
40	Locating ethics in data science: responsibility and accountability in global and distributed knowledge production systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160122.	1.6	65
41	Sticks <i>and </i> carrots: encouraging open science at its source. Geo: Geography and Environment, 2015, 2, 12-16.	0.5	43
42	Repertoires: How to Transform a Project into a Research Community. BioScience, 2015, 65, 701-708.	2.2	32
43	What Counts as Scientific Data? A Relational Framework. Philosophy of Science, 2015, 82, 810-821.	0.5	107
44	Data Interpretation in the Digital Age. Perspectives on Science, 2014, 22, 397-417.	0.3	32
45	What difference does quantity make? On the epistemology of Big Data in biology. Big Data and Society, 2014, 1, 205395171453439.	2.6	168
46	Making Organisms Model Human Behavior: Situated Models in North-American Alcohol Research, since 1950. Science in Context, 2014, 27, 485-509.	0.1	38
47	Introduction: On the Philosophy of Science in Practice. Journal for General Philosophy of Science, 2013, 44, 259-261.	0.7	11
48	Integrating data to acquire new knowledge: Three modes of integration in plant science. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44, 503-514.	0.8	55
49	What makes a model organism?. Endeavour, 2013, 37, 209-212.	0.1	64
50	Classificatory Theory in Biology. Biological Theory, 2013, 7, 338-345.	0.8	16
51	Global data for local science: Assessing the scale of data infrastructures in biological and biomedical research. BioSocieties, 2013, 8, 449-465.	0.8	42
52	Bigger, faster, better? Rhetorics and practices of large-scale research in contemporary bioscience. BioSocieties, 2013, 8, 386-396.	0.8	32
53	Introduction: Biomedical Trans-Actions, Postgenomics, and Knowledge/Value. Public Culture, 2013, 25, 463-475.	0.2	52
54	Why the Current Insistence on Open Access to Scientific Data? Big Data, Knowledge Production, and the Political Economy of Contemporary Biology. Bulletin of Science, Technology and Society, 2013, 33, 6-11.	1.1	56

#	Article	IF	CITATIONS
55	Making open data work for plant scientists. Journal of Experimental Botany, 2013, 64, 4109-4117.	2.4	23
56	Data-Intensive Research., 2013, , 545-548.		1
57	Founders Effect. , 2013, , 757-757.		0
58	Community Database. , 2013, , 445-445.		0
59	Bio-Ontologies. , 2013, , 142-145.		0
60	Curation., 2013,, 509-509.		0
61	Model Organism. , 2013, , 1398-1401.		1
62	Stock Center. , 2013, , 2013-2013.		0
63	When humans are the exception: Cross-species databases at the interface of biological and clinical research. Social Studies of Science, 2012, 42, 214-236.	1.5	41
64	Introduction: Making sense of data-driven research in the biological and biomedical sciences. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2012, 43, 1-3.	0.8	86
65	Re-thinking organisms: The impact of databases on model organism biology. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2012, 43, 29-36.	0.8	139
66	Under one leaf: an historical perspective on the UK Plant Science Federation. New Phytologist, 2012, 195, 10-13.	3.5	4
67	Classificatory Theory in Data-intensive Science: The Case of Open Biomedical Ontologies. International Studies in the Philosophy of Science, 2012, 26, 47-65.	0.2	35
68	What's so special about model organisms?. Studies in History and Philosophy of Science Part A, 2011, 42, 313-323.	0.6	282
69	How the gene ontology evolves. BMC Bioinformatics, 2011, 12, 325.	1.2	32
70	The scientific importance of asking questions at meetings: Why virtual debate is not enough. BioEssays, 2011, 33, 35-37.	1.2	1
71	Bioethics Authorship in Context: How Trends in Biomedicine Challenge Bioethics. American Journal of Bioethics, 2011, 11, 22-24.	0.5	1
72	Sustainable digital infrastructure. EMBO Reports, 2010, 11, 730-734.	2.0	43

#	Article	IF	CITATIONS
73	Packaging Small Facts for Re-Use: Databases in Model Organism Biology. , 2010, , 325-348.		32
74	Machine Science: The Human Side. Science, 2010, 330, 317-317.	6.0	0
75	Documenting the emergence of bio-ontologies: or, why researching bioinformatics requires HPSSB. History and Philosophy of the Life Sciences, 2010, 32, 105-25.	0.6	28
76	On the Locality of Data and Claims about Phenomena. Philosophy of Science, 2009, 76, 737-749.	0.5	41
77	An HPSSB (history, philosophy and social science of biology) approach to biomedical ontologies. , 2009, , .		0
78	Performing abstraction: two ways of modelling Arabidopsis thaliana. Biology and Philosophy, 2008, 23, 509-528.	0.7	26
79	Bio-ontologies as Tools for Integration in Biology. Biological Theory, 2008, 3, 7-11.	0.8	27
80	Arabidopsis, the botanical Drosophila: from mouse cress to model organism. Endeavour, 2007, 31, 34-38.	0.1	30
81	Growing weed, producing knowledge: an epistemic history of Arabidopsis thaliana. History and Philosophy of the Life Sciences, 2007, 29, 193-223.	0.6	29
82	Symposium Issue: Philosophy of Biology in Flanders and The Netherlands. Acta Biotheoretica, 2005, 53, 55-56.	0.7	2
83	Infrared metaphysics: the elusive ontology of radiation. Part 1. Studies in History and Philosophy of Science Part A, 2005, 36, 477-508.	0.6	7
84	Infrared metaphysics: radiation and theory-choice. Part 2. Studies in History and Philosophy of Science Part A, 2005, 36, 687-706.	0.6	1
85	Understanding in Biology:. , 0, , 189-209.		19
86	Focusing on Scientific Understanding., 0,, 1-18.		5
87	Data management challenges for artificial intelligence in plant and agricultural research. F1000Research, 0, 10, 324.	0.8	7
88	Data Science in Times of Pan(dem)ic., 0,,.		13
89	Data Governance is Key to Interpretation: Reconceptualizing Data in Data Science. , 0, , .		19
90	Valuing Data in Postgenomic Biology. , 0, , 126-149.		15