
Dmitry G Schepaschenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6135058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boreal forest health and global change. Science, 2015, 349, 819-822.	6.0	739
2	Mapping global cropland and field size. Global Change Biology, 2015, 21, 1980-1992.	4.2	404
3	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	13.7	371
4	Geo-Wiki: An online platform for improving global land cover. Environmental Modelling and Software, 2012, 31, 110-123.	1.9	249
5	Carbon stock and density of northern boreal and temperate forests. Global Ecology and Biogeography, 2014, 23, 297-310.	2.7	226
6	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509.	3.4	147
7	Climate change and wildfires in Russia. Contemporary Problems of Ecology, 2013, 6, 683-692.	0.3	125
8	The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth System Science Data, 2021, 13, 3927-3950.	3.7	123
9	Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103, 48-56.	4.9	117
10	An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosciences, 2012, 9, 5323-5340.	1.3	113
11	Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sensing of Environment, 2015, 168, 316-334.	4.6	112
12	A global dataset of crowdsourced land cover and land use reference data. Scientific Data, 2017, 4, 170075.	2.4	112
13	Estimating the global distribution of field size using crowdsourcing. Global Change Biology, 2019, 25, 174-186.	4.2	108
14	The Importance of Consistent Global Forest Aboveground Biomass Product Validation. Surveys in Geophysics, 2019, 40, 979-999.	2.1	106
15	Tamm Review: Observed and projected climate change impacts on Russia's forests and its carbon balance. Forest Ecology and Management, 2016, 361, 432-444.	1.4	104
16	Acclimation of Russian forests to recent changes in climate. Global Change Biology, 2005, 11, 2090-2102.	4.2	100
17	Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget. Doklady Earth Sciences, 2011, 441, 1678-1682.	0.2	97
18	Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. Remote Sensing of Environment, 2015, 162, 208-220.	4.6	97

DMITRY G SCHEPASCHENKO

#	Article	IF	CITATIONS
19	Ground Data are Essential for Biomass Remote Sensing Missions. Surveys in Geophysics, 2019, 40, 863-880.	2.1	91
20	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	86
21	Spatial distribution of arable and abandoned land across former Soviet Union countries. Scientific Data, 2018, 5, 180056.	2.4	81
22	A new hybrid land cover dataset for Russia: a methodology for integrating statistics, remote sensing and in situ information. Journal of Land Use Science, 2011, 6, 245-259.	1.0	70
23	A dataset of forest biomass structure for Eurasia. Scientific Data, 2017, 4, 170070.	2.4	68
24	Harnessing the power of volunteers, the internet and Google Earth to collect and validate global spatial information using Geo-Wiki. Technological Forecasting and Social Change, 2015, 98, 324-335.	6.2	66
25	Contributing to WUDAPT: A Local Climate Zone Classification of Two Cities in Ukraine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 1841-1853.	2.3	65
26	Semi-empirical models for assessing biological productivity of Northern Eurasian forests. Ecological Modelling, 2007, 204, 163-179.	1.2	63
27	Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes. Remote Sensing, 2012, 4, 2923-2943.	1.8	61
28	The pool of organic carbon in the soils of Russia. Eurasian Soil Science, 2013, 46, 107-116.	0.5	57
29	Characterizing the Spatial and Temporal Availability of Very High Resolution Satellite Imagery in Google Earth and Microsoft Bing Maps as a Source of Reference Data. Land, 2018, 7, 118.	1.2	48
30	A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 2022, 272, 112917.	4.6	48
31	Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers?. Climatic Change, 2010, 103, 137-157.	1.7	46
32	Improved Estimates of Biomass Expansion Factors for Russian Forests. Forests, 2018, 9, 312.	0.9	46
33	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	2.4	44
34	Mapping certified forests for sustainable management - A global tool for information improvement through participatory and collaborative mapping. Forest Policy and Economics, 2017, 83, 10-18.	1.5	41
35	Crowdsourcing In-Situ Data on Land Cover and Land Use Using Gamification and Mobile Technology. Remote Sensing, 2016, 8, 905.	1.8	40
36	Russian forest sequesters substantially more carbon than previously reported. Scientific Reports, 2021, 11, 12825.	1.6	38

DMITRY G SCHEPASCHENKO

#	Article	IF	CITATIONS
37	Improving the dynamics of Northern Hemisphere high-latitude vegetation in the ORCHIDEE ecosystem model. Geoscientific Model Development, 2015, 8, 2263-2283.	1.3	36
38	Comparison of Data Fusion Methods Using Crowdsourced Data in Creating a Hybrid Forest Cover Map. Remote Sensing, 2016, 8, 261.	1.8	35
39	Downgrading Recent Estimates of Land Available for Biofuel Production. Environmental Science & Technology, 2013, 47, 130128103203003.	4.6	34
40	LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya. Remote Sensing, 2017, 9, 754.	1.8	31
41	Increasing crop production in Russia and Ukraine—regional and global impacts from intensification and recultivation. Environmental Research Letters, 2018, 13, 025008.	2.2	31
42	Recent Advances in Forest Observation with Visual Interpretation of Very High-Resolution Imagery. Surveys in Geophysics, 2019, 40, 839-862.	2.1	31
43	Improved light and temperature responses for light-use-efficiency-based GPP models. Biogeosciences, 2013, 10, 6577-6590.	1.3	30
44	Global forest management data for 2015 at a 100 m resolution. Scientific Data, 2022, 9, 199.	2.4	30
45	Respiration of Russian soils: Climatic drivers and response to climate change. Science of the Total Environment, 2021, 785, 147314.	3.9	28
46	Comment on $\hat{a} \in \hat{c}$ The extent of forest in dryland biomes $\hat{a} \in \hat{c}$ Science, 2017, 358, .	6.0	26
47	Mapping growing stock volume and forest live biomass: a case study of the Polissya region of Ukraine. Environmental Research Letters, 2017, 12, 105001.	2.2	25
48	Soil contribution to carbon budget of Russian forests. Agricultural and Forest Meteorology, 2015, 200, 97-108.	1.9	23
49	Terrestrial Ecosystems and Their Change. Springer Environmental Science and Engineering, 2013, , 171-249.	0.1	22
50	Estimation of forest area and its dynamics in Russia based on synthesis of remote sensing products. Contemporary Problems of Ecology, 2015, 8, 811-817.	0.3	22
51	Differences in satellite-derived NO x emission factors between Eurasian and North American boreal forest fires. Atmospheric Environment, 2015, 121, 55-65.	1.9	22
52	Independent data for transparent monitoring of greenhouse gas emissions from the land use sector – What do stakeholders think and need?. Environmental Science and Policy, 2018, 85, 101-112.	2.4	22
53	Net primary production of forest ecosystems of Russia: A new estimate. Doklady Earth Sciences, 2008, 421, 1009-1012.	0.2	21
54	Impact of Disturbances on the Carbon Cycle of Forest Ecosystems in Ukrainian Polissya. Forests, 2019, 10, 337.	0.9	19

#	Article	IF	CITATIONS
55	A spatial assessment of the forest carbon budget for Ukraine. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 985-1006.	1.0	19
56	A global map of root biomass across the world's forests. Earth System Science Data, 2021, 13, 4263-4274.	3.7	19
57	The Return of Nature to the Chernobyl Exclusion Zone: Increases in Forest Cover of 1.5 Times Since the 1986 Disaster. Forests, 2021, 12, 1024.	0.9	16
58	Drivers of tropical forest loss between 2008 and 2019. Scientific Data, 2022, 9, 146.	2.4	14
59	Exploiting Growing Stock Volume Maps for Large Scale Forest Resource Assessment: Cross-Comparisons of ASAR- and PALSAR-Based GSV Estimates with Forest Inventory in Central Siberia. Forests, 2014, 5, 1753-1776.	0.9	13
60	Quantifying Impacts of National-Scale Afforestation on Carbon Budgets in South Korea from 1961 to 2014. Forests, 2019, 10, 579.	0.9	13
61	Modeling Burned Areas in Indonesia: The FLAM Approach. Forests, 2018, 9, 437.	0.9	12
62	Can a national afforestation plan achieve simultaneous goals of biodiversity and carbon enhancement? Exploring optimal decision making using multi-spatial modeling. Biological Conservation, 2022, 267, 109474.	1.9	12
63	Lessons learned in developing reference data sets with the contribution of citizens: the Geo-Wiki experience. Environmental Research Letters, 2022, 17, 065003.	2.2	10
64	A Continental Assessment of the Drivers of Tropical Deforestation With a Focus on Protected Areas. Frontiers in Conservation Science, 2022, 3, .	0.9	9
65	Assessing Forest Ecosystems across the Vertical Edge of the Mid-Latitude Ecotone Using the BioGeoChemistry Management Model (BGC-MAN). Forests, 2019, 10, 523.	0.9	8
66	Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers?. , 2010, , 137-157.		8
67	Development of Information-Computational Infrastructure for Environmental Research in Siberia as a Baseline Component of the Northern Eurasia Earth Science Partnership Initiative (NEESPI) Studies. Springer Environmental Science and Engineering, 2013, , 19-55.	0.1	6
68	90Sr Content in the Stemwood of Forests within Ukrainian Polissya. Forests, 2020, 11, 270.	0.9	5
69	Species- and elevation-dependent productivity changes in East Asian temperate forests. Environmental Research Letters, 2020, 15, 034012.	2.2	5
70	Mapping Human Impact Using Crowdsourcing. , 2016, , 89-101.		3
71	Vote Aggregation Techniques in the Geo-Wiki Crowdsourcing Game: A Case Study. Communications in Computer and Information Science, 2017, , 41-50.	0.4	2
72	Urban Geo-Wiki. Advances in Electronic Government, Digital Divide, and Regional Development Book Series, 2013, , 119-143.	0.2	2

#	Article	IF	CITATIONS
73	Title is missing!. Water, Air, and Soil Pollution, 2000, 121, 339-347.	1.1	1
74	Limit uncertainties in land emissions. Nature, 2016, 534, 621-621.	13.7	1
75	Assessment and monitoring of Siberian forest resources in the framework of the EU-Russia ZAPÁS project. , 2012, , .		Ο
76	Towards harmonizing competing models: Russian forests' net primary production case study. Technological Forecasting and Social Change, 2015, 98, 245-254.	6.2	0
77	Specifisity of phytocoenotic structure and biomass of ground cover in northern boreal forests of Middle Siberia. BIO Web of Conferences, 2020, 24, 00057.	0.1	0