Bin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6134522/publications.pdf Version: 2024-02-01

<u>ΒιΝ ΖΗΛΟ</u>

#	Article	IF	CITATIONS
1	Environmentally-benign, water-based covalent polymer network for flame retardant cotton. Cellulose, 2021, 28, 5855.	4.9	27
2	A novel aminothiazole-based cyclotriphosphazene derivate towards epoxy resins for high flame retardancy and smoke suppression. Polymer Degradation and Stability, 2021, 190, 109651.	5.8	32
3	Graphene oxide-highly anisotropic noble metal hybrid systems for intensified surface enhanced Raman scattering and direct capture and sensitive discrimination in PCBs monitoring. Journal of Hazardous Materials, 2020, 385, 121510.	12.4	34
4	Facile two-step phosphazine-based network coating for flame retardant cotton. Cellulose, 2020, 27, 4123-4132.	4.9	40
5	Impacts of multi-element flame retardants on flame retardancy, thermal stability, and pyrolysis behavior of epoxy resin. Polymer Degradation and Stability, 2019, 167, 217-227.	5.8	31
6	Functionalized Graphene Oxide Based on Hydrogenâ€Bonding Interaction in Water: Preparation and Flameâ€Retardation on Epoxy Resin. Macromolecular Materials and Engineering, 2019, 304, 1900164.	3.6	17
7	Flame retardation and thermal stability of novel phosphoramide/expandable graphite in rigid polyurethane foam. Journal of Applied Polymer Science, 2018, 135, 46434.	2.6	34
8	Green synthesis of multi-dimensional plasmonic coupling structures: Graphene oxide gapped gold nanostars for highly intensified surface enhanced Raman scattering. Chemical Engineering Journal, 2018, 349, 581-587.	12.7	35
9	An effective multi-hydroxy-containing ammonium phosphate towards flame-retarding poly(lactic) Tj ETQq1 1 0. 2018, 134, 265-273.	784314 rg 5.5	BT /Overlock 29
10	Bi-phase flame-retardant actions of water-blown rigid polyurethane foam containing diethyl-N,N-bis(2-hydroxyethyl) phosphoramide and expandable graphite. Journal of Analytical and Applied Pyrolysis, 2017, 124, 247-255.	5.5	49
11	A novel phosphoramidate and its application on cotton fabrics: Synthesis, flammability and thermal degradation. Journal of Analytical and Applied Pyrolysis, 2017, 125, 109-116.	5.5	62
12	A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform. Applied Surface Science, 2017, 409, 306-313.	6.1	36
13	Graphene oxide-wrapped flower-like sliver particles for surface-enhanced Raman spectroscopy and their applications in polychlorinated biphenyls detection. Applied Surface Science, 2017, 400, 49-56.	6.1	54
14	Bisphenol-S bridged penta(anilino)cyclotriphosphazene and its application in epoxy resins: Synthesis, thermal degradation, and flame retardancy. Polymer Degradation and Stability, 2017, 135, 140-151.	5.8	108
15	Enhanced flame retardancy of DGEBA epoxy resin with a novel bisphenol-A bridged cyclotriphosphazene. Polymer Degradation and Stability, 2017, 144, 292-303.	5.8	35
16	Novel synthesis of hierarchical flower-like silver assemblies with assistance of natural organic acids for surface-enhanced Raman spectroscopy. Journal of Materials Science, 2017, 52, 11391-11401.	3.7	20
17	Silver dendrites decorated filter membrane as highly sensitive and reproducible three dimensional surface enhanced Raman scattering substrates. Applied Surface Science, 2016, 387, 431-436.	6.1	41
18	Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate. Applied Surface Science, 2016, 377, 167-173.	6.1	40

Βιν Ζήλο

#	Article	IF	CITATIONS
19	Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polymer Degradation and Stability, 2016, 133, 162-173.	5.8	71
20	Acrylonitrile–Butadiene–Styrene Terpolymer with Metal Hypophosphites: Flame Retardance and Mechanism Research. Industrial & Engineering Chemistry Research, 2014, 53, 2299-2307.	3.7	30
21	Aluminum Hydroxymethylphosphinate and Melamine Pyrophosphate: Synergistic Flame Retardance and Smoke Suppression for Glass Fiber Reinforced Polyamide 6. Industrial & Engineering Chemistry Research, 2013, 52, 15613-15620.	3.7	14
22	Synergistic Effect between Aluminum Hypophosphite and Alkyl-Substituted Phosphinate in Flame-Retarded Polyamide 6. Industrial & Engineering Chemistry Research, 2013, 52, 17162-17170.	3.7	48
23	Aluminum Hypophosphite versus Alkyl-Substituted Phosphinate in Polyamide 6: Flame Retardance, Thermal Degradation, and Pyrolysis Behavior. Industrial & Engineering Chemistry Research, 2013, 52, 2875-2886.	3.7	104
24	Thermal Degradation and Fire Behaviors of Glass Fiber Reinforced PA6 Flame Retarded by Combination of Aluminum Hypophosphite with Melamine Derivatives. ACS Symposium Series, 2012, , 167-182.	0.5	3
25	A mainâ€chain phosphorusâ€containing poly(trimethylene terephthalate) copolyester: synthesis, characterization, and flame retardance. Polymers for Advanced Technologies, 2012, 23, 1276-1282.	3.2	14
26	An efficient halogen-free flame retardant for glass-fibre-reinforced poly(butylene terephthalate). Polymer Degradation and Stability, 2012, 97, 158-165.	5.8	42
27	Polyamide 6 with a flame retardant encapsulated by polyamide 66: Flame retardation, thermo-decomposition and the potential mechanism. Chinese Journal of Polymer Science (English) Tj ETQq1 1 0.	78 9.3 814 rg	;BB/Overlock
28	A phosphorusâ€containing inorganic compound as an effective flame retardant for glassâ€fiberâ€reinforced polyamide 6. Journal of Applied Polymer Science, 2011, 119, 2379-2385.	2.6	69
29	A novel efficient halogen-free flame retardant system for polycarbonate. Polymer Degradation and Stability. 2011. 96. 320-327.	5.8	93