Alexander Crits-Christoph

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6134166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Priority effects in microbiome assembly. Nature Reviews Microbiology, 2022, 20, 109-121.	13.6	180
2	Soils and sediments host Thermoplasmata archaea encoding novel copper membrane monooxygenases (CuMMOs). ISME Journal, 2022, 16, 1348-1362.	4.4	17
3	Species- and site-specific genome editing in complex bacterial communities. Nature Microbiology, 2022, 7, 34-47.	5.9	127
4	Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes, 2022, 14, 2055944.	4.3	50
5	Interactions of Non-Nutritive Artificial Sweeteners with the Microbiome in Metabolic Syndrome. Immunometabolism, 2022, 4, .	0.7	6
6	Sewage, Salt, Silica, and SARS-CoV-2 (4S): An Economical Kit-Free Method for Direct Capture of SARS-CoV-2 RNA from Wastewater. Environmental Science & Technology, 2021, 55, 4880-4888.	4.6	72
7	Meanders as a scaling motif for understanding of floodplain soil microbiome and biogeochemical potential at the watershed scale. Microbiome, 2021, 9, 121.	4.9	11
8	Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area. Water Research X, 2021, 12, 100111.	2.8	67
9	Infant gut strain persistence is associated with maternal origin, phylogeny, and traits including surface adhesion and iron acquisition. Cell Reports Medicine, 2021, 2, 100393.	3.3	39
10	The origins of SARS-CoV-2: A critical review. Cell, 2021, 184, 4848-4856.	13.5	330
11	inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. Nature Biotechnology, 2021, 39, 727-736.	9.4	238
12	Genome Sequencing of Sewage Detects Regionally Prevalent SARS-CoV-2 Variants. MBio, 2021, 12, .	1.8	284
13	Transporter genes in biosynthetic gene clusters predict metabolite characteristics and siderophore activity. Genome Research, 2021, 31, 239-250.	2.4	24
14	Large freshwater phages with the potential to augment aerobic methane oxidation. Nature Microbiology, 2020, 5, 1504-1515.	5.9	66
15	Consistent Metagenome-Derived Metrics Verify and Delineate Bacterial Species Boundaries. MSystems, 2020, 5, .	1.7	135
16	Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type. MBio, 2020, 11, .	1.8	116
17	Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow. ISME Journal, 2020, 14, 1834-1846.	4.4	43
18	High proportions of bacteria and archaea across most biomes remain uncultured. ISME Journal, 2019, 13, 3126-3130.	4.4	264

#	Article	IF	CITATIONS
19	Mediterranean grassland soil C–N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. Nature Microbiology, 2019, 4, 1356-1367.	5.9	170
20	Genome-Resolved Proteomic Stable Isotope Probing of Soil Microbial Communities Using 13CO2 and 13C-Methanol. Frontiers in Microbiology, 2019, 10, 2706.	1.5	23
21	Necrotizing enterocolitis is preceded by increased gut bacterial replication, <i>Klebsiella</i> , and fimbriae-encoding bacteria. Science Advances, 2019, 5, eaax5727.	4.7	120
22	Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature, 2018, 558, 440-444.	13.7	321
23	Phylogenetic and Functional Substrate Specificity for Endolithic Microbial Communities in Hyper-Arid Environments. Frontiers in Microbiology, 2016, 7, 301.	1.5	60
24	Functional interactions of archaea, bacteria and viruses in a hypersaline endolithic community. Environmental Microbiology, 2016, 18, 2064-2077.	1.8	107
25	Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyperâ€arid zone of the <scp>A</scp> tacama <scp>D</scp> esert. Environmental Microbiology, 2015, 17, 299-315.	1.8	108
26	Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome, 2013, 1, 28.	4.9	215