
Akiko Shiratsuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6133572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Letters, 1993, 325, 167-172.	1.3	374
2	Evidence for Phagocytosis of Influenza Virus-Infected, Apoptotic Cells by Neutrophils and Macrophages in Mice. Journal of Immunology, 2007, 178, 2448-2457.	0.4	237
3	Draper-mediated and Phosphatidylserine-independent Phagocytosis of Apoptotic Cells by Drosophila Hemocytes/Macrophages. Journal of Biological Chemistry, 2004, 279, 48466-48476.	1.6	182
4	Role of Class B Scavenger Receptor Type I in Phagocytosis of Apoptotic Rat Spermatogenic Cells by Sertoli Cells. Journal of Biological Chemistry, 1999, 274, 5901-5908.	1.6	142
5	Phagocytic Removal of Apoptotic Spermatogenic Cells by Sertoli Cells: Mechanisms and Consequences. Biological and Pharmaceutical Bulletin, 2004, 27, 13-16.	0.6	139
6	The Triacylated ATP Binding Cluster Transporter Substrate-binding Lipoprotein of Staphylococcus aureus Functions as a Native Ligand for Toll-like Receptor 2. Journal of Biological Chemistry, 2009, 284, 8406-8411.	1.6	125
7	Recognition of Phosphatidylserine on the Surface of Apoptotic Spermatogenic Cells and Subsequent Phagocytosis by Sertoli Cells of the Rat. Journal of Biological Chemistry, 1997, 272, 2354-2358.	1.6	123
8	Inhibitory Effect of Toll-Like Receptor 4 on Fusion between Phagosomes and Endosomes/Lysosomes in Macrophages. Journal of Immunology, 2004, 172, 2039-2047.	0.4	105
9	Phosphatidylserine Binding of Class B Scavenger Receptor Type I, a Phagocytosis Receptor of Testicular Sertoli Cells. Journal of Biological Chemistry, 2002, 277, 27559-27566.	1.6	99
10	TLR2-Mediated Survival of <i>Staphylococcus aureus</i> in Macrophages: A Novel Bacterial Strategy against Host Innate Immunity. Journal of Immunology, 2007, 178, 4917-4925.	0.4	85
11	Essential Role of Phosphatidylserine Externalization in Apoptosing Cell Phagocytosis by Macrophages. Biochemical and Biophysical Research Communications, 1998, 246, 549-555.	1.0	74
12	Identification of Lipoteichoic Acid as a Ligand for Draper in the Phagocytosis of <i>Staphylococcus aureus</i> by <i>Drosophila</i> Hemocytes. Journal of Immunology, 2009, 183, 7451-7460.	0.4	73
13	Pretaporter, a Drosophila protein serving as a ligand for Draper in the phagocytosis of apoptotic cells. EMBO Journal, 2009, 28, 3868-3878.	3.5	71
14	Induction of Apoptosis and Subsequent Phagocytosis of Virus-Infected Cells As an Antiviral Mechanism. Frontiers in Immunology, 2017, 8, 1220.	2.2	71
15	A novel brain-specific 25 kDa protein (p25) is phosphorylated by a Ser/Thr-Pro kinase (TPK II) from tau protein kinase fractions. FEBS Letters, 1991, 289, 37-43.	1.3	68
16	Inhibition of sperm production in mice by annexin V microinjected into seminiferous tubules: possible etiology of phagocytic clearance of apoptotic spermatogenic cells and male infertility. Cell Death and Differentiation, 2002, 9, 742-749.	5.0	66
17	Participation of nitric oxide reductase in survival of Pseudomonas aeruginosa in LPS-activated macrophages. Biochemical and Biophysical Research Communications, 2007, 355, 587-591.	1.0	61
18	Integrin αPS3/βν-mediated Phagocytosis of Apoptotic Cells and Bacteria in Drosophila. Journal of Biological Chemistry, 2013, 288, 10374-10380.	1.6	59

AKIKO SHIRATSUCHI

#	Article	IF	CITATIONS
19	Identification of calreticulin as a marker for phagocytosis of apoptotic cells in Drosophila. Experimental Cell Research, 2007, 313, 500-510.	1.2	56
20	Protection of Insects against Viral Infection by Apoptosis-Dependent Phagocytosis. Journal of Immunology, 2015, 195, 5696-5706.	0.4	56
21	Independent Recognition of Staphylococcus aureus by Two Receptors for Phagocytosis in Drosophila. Journal of Biological Chemistry, 2012, 287, 21663-21672.	1.6	53
22	Phosphatidylserine-Mediated Phagocytosis of Influenza A Virus-Infected Cells by Mouse Peritoneal Macrophages. Journal of Virology, 2000, 74, 9240-9244.	1.5	51
23	In vivo analysis of phagocytosis of apoptotic cells by testicular Sertoli cells. Molecular Reproduction and Development, 2005, 71, 166-177.	1.0	51
24	Augmentation of fatality of influenza in mice by inhibition of phagocytosis. Biochemical and Biophysical Research Communications, 2005, 337, 881-886.	1.0	41
25	Involvement of COX-1 and up-regulated prostaglandin E synthases in phosphatidylserine liposome-induced prostaglandin E2 production by microglia. Journal of Neuroimmunology, 2006, 172, 112-120.	1.1	40
26	Signalling Pathway Involving GULP, MAPK and Rac1 for SR-BI-Induced Phagocytosis of Apoptotic Cells. Journal of Biochemistry, 2009, 145, 387-394.	0.9	39
27	Role of Phosphatidylserine Exposure and Sugar Chain Desialylation at the Surface of Influenza Virus-infected Cells in Efficient Phagocytosis by Macrophages. Journal of Biological Chemistry, 2002, 277, 18222-18228.	1.6	38
28	Impaired spermatogenesis and male fertility defects in CIZ/Nmp4-disrupted mice. Genes To Cells, 2004, 9, 575-589.	0.5	34
29	Inhibitory Role for <scp>d</scp> -Alanylation of Wall Teichoic Acid in Activation of Insect Toll Pathway by Peptidoglycan of <i>Staphylococcus aureus</i> . Journal of Immunology, 2010, 185, 2424-2431.	0.4	32
30	Independence of Plasma Membrane Blebbing from Other Biochemical and Biological Characteristics of Apoptotic Cells. Journal of Biochemistry, 2002, 132, 381-386.	0.9	30
31	93-kDa Twin-domain Serine Protease Inhibitor (Serpin) Has a Regulatory Function on the Beetle Toll Proteolytic Signaling Cascade. Journal of Biological Chemistry, 2011, 286, 35087-35095.	1.6	29
32	Expression and function of class B scavenger receptor type I on both apical and basolateral sides of the plasma membrane of polarized testicular Sertoli cells of the rat. Development Growth and Differentiation, 2004, 46, 283-298.	0.6	26
33	Involvement of mitogen-activated protein kinases in class B scavenger receptor type l-induced phagocytosis of apoptotic cells. Experimental Cell Research, 2006, 312, 1820-1830.	1.2	25
34	Phagocytic removal of cells that have become unwanted: Implications for animal development and tissue homeostasis. Development Growth and Differentiation, 2011, 53, 149-160.	0.6	25
35	Stimulation of Phagocytosis of Influenza Virusâ€Infected Cells through Surface Desialylation of Macrophages by Viral Neuraminidase. Microbiology and Immunology, 2004, 48, 875-881.	0.7	23
36	Inhibitory effect of N-palmitoylphosphatidylethanolamine on macrophage phagocytosis through inhibition of Rac1 and Cdc42. Journal of Biochemistry, 2008, 145, 43-50.	0.9	23

AKIKO SHIRATSUCHI

#	Article	IF	CITATIONS
37	Distinct localization of lipid rafts and externalized phosphatidylserine at the surface of apoptotic cells. Biochemical and Biophysical Research Communications, 2005, 327, 94-99.	1.0	22
38	Apoptosis-dependent Externalization and Involvement in Apoptotic Cell Clearance of DmCaBP1, an Endoplasmic Reticulum Protein of Drosophila. Journal of Biological Chemistry, 2012, 287, 3138-3146.	1.6	21
39	Signaling pathway for phagocyte priming upon encounter with apoptotic cells. Journal of Biological Chemistry, 2017, 292, 8059-8072.	1.6	21
40	Structural Change of Ribosomes during Apoptosis: Degradation and Externalization of Ribosomal Proteins in Doxorubicin-Treated Jurkat Cells. Journal of Biochemistry, 2002, 131, 485-493.	0.9	20
41	Concomitant induction of apoptosis and expression of monocyte chemoattractant protein-1 in cultured rat luteal cells by nuclear factor-kappaB and oxidative stress. Development Growth and Differentiation, 2003, 45, 351-359.	0.6	20
42	Auxiliary role for <scp>d</scp> â€alanylated wall teichoic acid in Tollâ€like receptor 2â€mediated survival of <i>Staphylococcus aureus</i> in macrophages. Immunology, 2010, 129, 268-277.	2.0	19
43	Difference in the way of macrophage recognition of target cells depending on their apoptotic states. Cell Death and Differentiation, 2001, 8, 1113-1122.	5.0	17
44	Involvement of cannabinoid receptor CB2 in dectinâ€1â€mediated macrophage phagocytosis. Immunology and Cell Biology, 2008, 86, 179-184.	1.0	16
45	Bridging effect of recombinant human mannoseâ€binding lectin in macrophage phagocytosis of <i>Escherichia coli</i> . Immunology, 2008, 124, 575-583.	2.0	16
46	Pattern Recognition in Phagocytic Clearance of Altered Self. Advances in Experimental Medicine and Biology, 2009, 653, 129-138.	0.8	16
47	Determination of Cell Type Specificity and Estrous Cycle Dependency of Monocyte Chemoattractant Protein-1 Expression in Corpora Lutea of Normally Cycling Rats in Relation to Apoptosis and Monocyte/Macrophage Accumulation1. Biology of Reproduction, 2002, 67, 1502-1508.	1.2	15
48	Externalization and recognition by macrophages of large subunit of eukaryotic translation initiation factor 3 in apoptotic cells. Experimental Cell Research, 2005, 309, 137-148.	1.2	14
49	â€~Chymotrypsin-like' activity of chicken liver multicatalytic proteinase resides in the smallest subunit. BBA - Proteins and Proteomics, 1990, 1041, 269-272.	2.1	12
50	Phosphatidylserine- and integrin-mediated phagocytosis of apoptotic luteal cells by macrophages of the rat. Development Growth and Differentiation, 2005, 47, 153-161.	0.6	12
51	Isolation of a Drosophila Gene Coding for a Protein Containing a Novel Phosphatidylserine-Binding Motif. Journal of Biochemistry, 2005, 137, 593-599.	0.9	10
52	Differences in the mode of phagocytosis of bacteria between macrophages and testicular Sertoli cells. Drug Discoveries and Therapeutics, 2013, 7, 73-7.	0.6	10
53	Involvement of EnvZ–OmpR two-component system in virulence control of Escherichia coli in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 2013, 438, 306-311.	1.0	9
54	Molecular Cloning and the Nucleotide Sequence of the Clostridium thermocellum trpE Gene1. Journal of Biochemistry, 1989, 105, 362-366.	0.9	8

AKIKO SHIRATSUCHI

#	Article	IF	CITATIONS
55	Nucleotide sequence of trpE, anthranilate synthase I gene, of Bacillus caldotenax. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1090, 348-350.	2.4	8
56	cDNA cloning of a novel brain-specific protein p25. BBA - Proteins and Proteomics, 1995, 1251, 66-68.	2.1	8
57	A Presumed Human Nuclear Autoantigen That Translocates to Plasma Membrane Blebs during Apoptosis. Journal of Biochemistry, 2003, 133, 211-218.	0.9	7
58	Perturbation of spermatogenesis by androgen antagonists directly injected into seminiferous tubules of live mice. Reproduction, 2007, 133, 21-27.	1.1	7
59	Mechanisms and Significance of Phagocytic Elimination of Cells Undergoing Apoptotic Death. Biological and Pharmaceutical Bulletin, 2017, 40, 1819-1827.	0.6	7
60	Selective expression of the scaffold protein JSAP1 in spermatogonia and spermatocytes. Reproduction, 2006, 131, 711-719.	1.1	6
61	Protective effects of <i>Phaseolus vulgaris</i> lectin against viral infection in <i>Drosophila </i> . Drug Discoveries and Therapeutics, 2017, 11, 329-335.	0.6	6
62	Characterization of Bacillus caldotenax Anthranilate Synthase I Produced in Escherichia coli and Identification of Its Essential Arginine Residue by Site-Directed Mutagenesis'1. Journal of Biochemistry, 1992, 112, 714-718.	0.9	5
63	Role for Ïf38 in Prolonged Survival of <i>Escherichia coli</i> in <i>Drosophila melanogaster</i> . Journal of Immunology, 2014, 192, 666-675.	0.4	5
64	Mechanisms and Consequences of Phagocytosis of Influenza Virus-Infected Cells. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2008, 7, 97-100.	1.1	3
65	Peptidoglycan recognition protein-triggered induction of Escherichia coli gene in Drosophila melanogaster. Journal of Biochemistry, 2015, 157, 507-517.	0.9	2
66	Inhibition of Phagocytic Killing of Escherichia coli in Drosophila Hemocytes by RNA Chaperone Hfq. Journal of Immunology, 2016, 197, 1298-1307.	0.4	2
67	Role for phagocytosis in the prevention of neoplastic transformation in Drosophila. Genes To Cells, 2020, 25, 675-684.	0.5	1