
Fabrizio Martelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6133477/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the TGF-β1 signaling abnormalities in the Gata1low mouse model of myelofibrosis. Blood, 2013, 121, 3345-3363.	1.4	86
2	Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion. Haematologica, 2015, 100, 178-187.	3.5	59
3	Concise Review: Stem Cellâ€Đerived Erythrocytes as Upcoming Players in Blood Transfusion. Stem Cells, 2012, 30, 1587-1596.	3.2	56
4	Altered SDF-1/CXCR4 axis in patients with primary myelofibrosis and in the Gata1low mouse model of the disease. Experimental Hematology, 2008, 36, 158-171.	0.4	50
5	The hypomorphic Gata1low mutation alters the proliferation/differentiation potential of the common megakaryocytic-erythroid progenitor. Blood, 2007, 109, 1460-1471.	1.4	48
6	Preclinical rationale for TGF-β inhibition as a therapeutic target for the treatment of myelofibrosis. Experimental Hematology, 2016, 44, 1138-1155.e4.	0.4	38
7	Variegation of the phenotype induced by the Gata1low mutation in mice of different genetic backgrounds. Blood, 2005, 106, 4102-4113.	1.4	32
8	Mitochondrial alterations induced by serum amine oxidase and spermine on human multidrug resistant tumor cells. Amino Acids, 2004, 26, 273-82.	2.7	31
9	P-Selectin Sustains Extramedullary Hematopoiesis in the <i>G ata1low</i> Model of Myelofibrosis. Stem Cells, 2016, 34, 67-82.	3.2	31
10	TGF- \hat{l}^21 protein trap AVID200 beneficially affects hematopoiesis and bone marrow fibrosis in myelofibrosis. JCI Insight, 2021, 6, .	5.0	31
11	GATA1 insufficiencies in primary myelofibrosis and other hematopoietic disorders: consequences for therapy. Expert Review of Hematology, 2018, 11, 169-184.	2.2	28
12	Gata1 expression driven by the alternative HS2 enhancer in the spleen rescues the hematopoietic failure induced by the hypomorphic Gata1low mutation. Blood, 2009, 114, 2107-2120.	1.4	26
13	The thrombopoietin/MPL axis is activated in the Gata1low mouse model of myelofibrosis and is associated with a defective RPS14 signature. Blood Cancer Journal, 2017, 7, e572-e572.	6.2	23
14	Thrombopoietin Inhibits Murine Mast Cell Differentiation. Stem Cells, 2008, 26, 912-919.	3.2	20
15	CXCR4â€independent rescue of the myeloproliferative defect of the gata1 ^{low} myelofibrosis mouse model by Aplidin®. Journal of Cellular Physiology, 2010, 225, 490-499.	4.1	16
16	Abnormal P-selectin localization during megakaryocyte development determines thrombosis in the gata1low model of myelofibrosis. Platelets, 2014, 25, 539-547.	2.3	14
17	A novel interaction between megakaryocytes and activated fibrocytes increases TGF-Î ² bioavailability in the Gata1(low) mouse model of myelofibrosis. American Journal of Blood Research, 2015, 5, 34-61.	0.6	14
18	The Calreticulin control of human stress erythropoiesis is impaired by JAK2V617F in polycythemia vera. Experimental Hematology, 2017, 50, 53-76.	0.4	12

FABRIZIO MARTELLI

#	Article	IF	CITATIONS
19	Dynamic regulation of Gata1 expression during the maturation of conventional dendritic cells. Experimental Hematology, 2010, 38, 489-503.e1.	0.4	11
20	Differential localization of P-selectin and von Willebrand factor during megakaryocyte maturation. Biotechnic and Histochemistry, 2010, 85, 157-170.	1.3	10
21	Removal of the Spleen in Mice Alters the Cytokine Expression Profile of the Marrow Microâ€environment and Increases Bone Formation. Annals of the New York Academy of Sciences, 2009, 1176, 77-86.	3.8	9
22	The CXCR1/CXCR2 Inhibitor Reparixin Alters the Development of Myelofibrosis in the Gata1low Mice. Frontiers in Oncology, 2022, 12, 853484.	2.8	7
23	Evidence for organâ€specific stem cell microenvironments. Journal of Cellular Physiology, 2010, 223, 460-470.	4.1	6
24	Phosphoproteomic Landscaping Identifies Non-canonical cKIT Signaling in Polycythemia Vera Erythroid Progenitors. Frontiers in Oncology, 2019, 9, 1245.	2.8	6
25	Aplidin Improves Megakaryocytopoiesis and Halts Neo-Angiogenesis in the Gata1low Murine Model of Myelofibrosis. Blood, 2008, 112, 2787-2787.	1.4	6
26	Resident Self-Tissue of Proinflammatory Cytokines Rather Than Their Systemic Levels Correlates with Development of Myelofibrosis in Gata1low Mice. Biomolecules, 2022, 12, 234.	4.0	6
27	Novel targets to cure primary myelofibrosis from studies on <i>Gata1</i> ^{low} mice. IUBMB Life, 2020, 72, 131-141.	3.4	5
28	Role of β1 integrin in thrombocytopoiesis. Faculty Reviews, 2021, 10, 68.	3.9	4
29	Increased Differentiation of Dermal Mast Cells in Mice Lacking the Mpl Gene. Stem Cells and Development, 2009, 18, 1081-1092.	2.1	3
30	Preclinical Rationale for the Use of Crizanlizumab (SEG101) in Myelofibrosis. Blood, 2020, 136, 26-27.	1.4	3
31	The Marine Tunicate-Derived Cyclic Depsipeptide Aplidin Restores Functional Hematopoiesis in the Marrow of the Gata1low Mouse Model of Myelofibrosis Blood, 2009, 114, 3914-3914.	1.4	1
32	hGATA1 Under the Control of a μLCR/β-Globin Promoter Rescues the Erythroid but Not the Megakaryocytic Phenotype Induced by the Gata1low Mutation in Mice. Frontiers in Genetics, 2021, 12, 720552.	2.3	1
33	SB431542, An Inhibitor of TGF-β1 Activin Receptor-Like Kinases, Improves the Natural History of Myelofibrosis In Gata1low Mice. Blood, 2010, 116, 462-462.	1.4	1
34	Glucocorticoid Regulation of Erythropoiesis in Humans: A Study of Patients with Cushing's Disease. Blood, 2015, 126, 2135-2135.	1.4	1
35	Altered Megakaryocytes Are Associated with Development of Pulmonary Fibrosis in Mice Carrying the Hypomorphic Gata1low Mutation. Blood, 2019, 134, 2336-2336.	1.4	1
36	The CXCL1 Inhibitor Reparixin Rescues Myelofibrosis in the <i>Gata1</i> low Model of the Disease. Blood, 2021, 138, 3579-3579.	1.4	1

FABRIZIO MARTELLI

#	Article	IF	CITATIONS
37	CALR resets the stress-response of erythroid cells and this function is impaired by CALR and JAK2 mutations alike in MPN. Experimental Hematology, 2016, 44, S70.	0.4	0
38	Activation of non-canonical cKIT signalling in erythroid progenitor cells from polycythemia vera. Experimental Hematology, 2017, 53, S77-S78.	0.4	0
39	Murine Mast Cells Express Mpl, the Thrombopoietin Receptor, and Thrombopoietin Is a Potent Regulator of Mast Cell Differentiation Blood, 2006, 108, 1335-1335.	1.4	Ο
40	Abnormal P-Selectin Localization During Megakaryocyte Development Determines Thrombosis in the Gata1low Model of Myelofibrosis Blood, 2009, 114, 1907-1907.	1.4	0
41	Transforming Growth Factor β (TGF-β)- and P-Selectin-Dependent Fibroblast Peripolesis of Megakaryocytes Contributes to Development of Myelofibrosis in Gata1low mice. Blood, 2011, 118, 1741-1741.	1.4	0
42	Increased TGF-β1 expression Cooperates with the Gata1low Mutation in Determining the Gata1low Phenotype in CD1 Mice. Blood, 2012, 120, 3462-3462.	1.4	0
43	The Glucocorticoid Receptor Plays an Important Role in Controlling Lipid Metabolism During Erythroid Maturation. Blood, 2012, 120, 3195-3195.	1.4	Ο
44	The JAK2 V617F Mutation Disrupts the Regulatory Activity Exerted By Calreticulin on the Glucocorticoid Receptor in Erythroid Cells. Blood, 2015, 126, 5216-5216.	1.4	0
45	Phosphoproteomic Landscaping Unveils Constitutive cKIT Activation in Human Erythroblasts from Polycythemia Vera (PV) Patients. Blood, 2016, 128, 399-399.	1.4	Ο
46	The Carboxy-Terminal Domain of Calreticulin (CALR) Exports the Glucocorticoid Receptor (GR) from the Nucleus to the Cytoplasm of Human Erythroid Cells Resetting Their Stress Response. Blood, 2016, 128, 545-545.	1.4	0
47	Ribosomal Deficiency Due to Activation of the Thrombopoietin Axis May be Involved in the Reduced Levels of GATA1 Expressed By Megakaryocytes (MKs) from the Gata1low Model of Myelofibrosis. Blood, 2016, 128, 4275-4275.	1.4	0
48	The Hypomorphic Gata1low Mutation Induces Fibrosis in Multiple Organs. Blood, 2018, 132, 3059-3059.	1.4	0
49	Human GATA1 Driven By the Human Μicro LCR/β-Globin Promoter Rescues the Erythroid but Not the Megakaryocytic Phenotype Induced in Mice By the Gata1low Mutation. Blood, 2018, 132, 1042-1042.	1.4	0
50	The Glucocorticoid Receptor-Dependent Stress Response in Human Erythropoiesis Is BCL11A-Dependent. Blood, 2021, 138, 939-939.	1.4	0