Wensheng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6133348/publications.pdf

Version: 2024-02-01

185998 2,652 153 28 citations h-index papers

40 g-index 154 154 154 2020 docs citations times ranked citing authors all docs

288905

#	Article	IF	Citations
1	Selfâ€standing Janus nanofiber heterostructure photocatalyst with hydrogen production and degradation of methylene blue. Journal of the American Ceramic Society, 2022, 105, 1428-1441.	1.9	9
2	Conjugative electrospinning towards Janus-type nanofibers array membrane concurrently displaying dual-functionality of improved red luminescence and tuneable superparamagnetism. Journal of Materials Science: Materials in Electronics, 2022, 33, 4438-4449.	1.1	10
3	"Off-On―typed upconversion fluorescence resonance energy transfer probe for the determination of Cu2+ in tap water. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120920.	2.0	9
4	Up-/Downconversion Fluorescence Dual-Channel Probe Based on NaYF ₄ : Yb/Er/Eu Nanoparticles for the Determination of Cu(II). ACS Applied Nano Materials, 2022, 5, 3333-3341.	2.4	7
5	Distinctive Sandwich-Type Composite Film and Deuterogenic Three-Dimensional Triwall Tubes Affording Concurrent Aeolotropic Conduction, Magnetism, and Up-/Down-Conversion Luminescence. ACS Omega, 2022, 7, 14332-14344.	1.6	3
6	NiCo2O4@PPy concurrently as cathode host material and interlayer for high-rate and long-cycle lithium sulfur batteries. Ceramics International, 2022, 48, 22287-22296.	2.3	16
7	Peculiar Sandwich-Typed Composite Membrane Endowed with Concurrent Tunable Electrically Conductive Anisotropism, Tailored Superparamagnetism, and Improved Green Luminescence. Russian Journal of Physical Chemistry A, 2022, 96, 884-893.	0.1	O
8	Flexible electrospun fluorescent anisotropic conductive Janus-typed nanoribbon membrane. European Polymer Journal, 2022, 173, 111265.	2.6	9
9	Hexagonal NiMoO ₄ -MoS ₂ nanosheet heterostructure as a bifunctional electrocatalyst for urea oxidation assisted overall water electrolysis. New Journal of Chemistry, 2022, 46, 10280-10288.	1.4	11
10	An innovative and facile strategy to construct GdF3:Eu3+@Void@SiO2 nanowire-in-nanotube structured nanofibers with photoluminescence-magnetism Bi-functionality. Journal of Luminescence, 2022, 249, 119040.	1.5	3
11	Janus nanoribbon-in-ribbon embedded structure microbelts and array with luminescent-conductive-magnetic polyfunction. European Polymer Journal, 2022, 175, 111361.	2.6	5
12	Electrospun light stimulus response-enhanced anisotropic conductive Janus membrane with up/down-conversion luminescence. Materials Chemistry Frontiers, 2022, 6, 2219-2232.	3.2	10
13	Sandwich-shape composite film displaying conductive aeolotropy, magnetism and fluorescence and derived 3D tri-wall tube. European Physical Journal Plus, 2021, 136, 1.	1.2	1
14	Modular multifunctional Janus-structure film offering multiple anisotropic conduction, polychromatic luminescence and tuned magnetism. European Physical Journal Plus, 2021, 136, 1.	1.2	2
15	Novel photosensitive dual-anisotropic conductive Janus film endued with magnetic-luminescent properties and derivative 3D structures. Journal of Colloid and Interface Science, 2021, 601, 899-914.	5.0	8
16	Tricolor flag-shaped nanobelt array and derivant 3D structures display concurrent conductive anisotropy, up-conversion fluorescence and magnetism. Materials and Design, 2021, 211, 110121.	3.3	4
17	Simultaneous Visual Detection and Removal of Cu ²⁺ with Electrospun Self-Supporting Flexible Amidated Polyacrylonitrile/Branched Polyethyleneimine Nanofiber Membranes. ACS Applied Materials & Amp; Interfaces, 2021, 13, 49288-49300.	4.0	46
18	A fluorescent triboelectric nanogenerator manufactured with a flexible janus nanobelt array concurrently acting as a charge-generating layer and charge-trapping layer. Nanoscale, 2021, 13, 19144-19154.	2.8	12

#	Article	IF	CITATIONS
19	Luminescence properties and energy transfer of Tb3+, Eu3+ co-doped YTaO4 phosphors obtained via sol–gel combustion process. Journal of Materials Science: Materials in Electronics, 2020, 31, 13688-13695.	1.1	10
20	Synthesis and Ethanol Sensing Properties of SnO2 Nanoparticles in SnO2 Nanotubes Composite. Russian Journal of Physical Chemistry A, 2020, 94, 2306-2311.	0.1	6
21	Local structure modulation of Mn ⁴⁺ -doped Na ₂ Si _{1â^'y} Ge _y F ₆ red phosphors for enhancement of emission intensity, moisture resistance, thermal stability and application in warm pc-WLEDs. Dalton Transactions. 2020. 49, 13805-13817.	1.6	36
22	A new concept of a pseudo-Janus structure: employing a Yin-Yang fish structure film with up/down conversion fluorescence and bi-anisotropic conduction to represent the pseudo-Janus structure as a case study. Journal of Materials Chemistry C, 2020, 8, 8676-8688.	2.7	10
23	Electrospun polyfunctional conductive anisotropic Janus-shaped film, derivative 3D Janus tube and 3D plus 2D complete flag-shaped structures. Journal of Materials Chemistry C, 2020, 8, 6565-6576.	2.7	22
24	Electrospinning-based construction of porous Mn ₃ O ₄ /CNFs as anodes for high-performance lithium-ion batteries. New Journal of Chemistry, 2020, 44, 3888-3895.	1.4	6
25	Moisture resistance, luminescence enhancement, energy transfer and tunable color of novel core-shell structure BaGeF6:Mn4+ phosphor. Chemical Engineering Journal, 2020, 390, 124579.	6.6	52
26	Comparison of different electrospinning technologies for the production of arrays with multifunctional properties: fluorescence, conduction and magnetism. Journal Physics D: Applied Physics, 2020, 53, 155301.	1.3	13
27	Optical characteristics, morphology evolution and thermal stability of novel red-emitting Mn4+-activated K2LiAl1-yGayF6 solid solution phosphors for high-performance warm WLED. Journal of Alloys and Compounds, 2020, 824, 153818.	2.8	30
28	Synthesis and multicolor luminescence of Tb3+ and Sm3+ co-doped LiGd(MoO4)2 phosphor. Journal of Materials Science: Materials in Electronics, 2019, 30, 16376-16383.	1.1	3
29	Mn ⁴⁺ nonequivalent-doped Al ³⁺ -based cryolite high-performance warm WLED red phosphors. New Journal of Chemistry, 2019, 43, 14859-14871.	1.4	15
30	Synthesis of multifunctional rare-earth fluoride/Ag nanowire nanocomposite for efficient therapy of cancer. Materials Science and Engineering C, 2019, 104, 109940.	3.8	15
31	A Novel Strategy to Fabricate CuS, Cu7.2S4, and Cu2–ÂxSe Nanofibers via Inheriting the Morphology of Electrospun CuO Nanofibers. Russian Journal of Physical Chemistry A, 2019, 93, 730-735.	0.1	2
32	Electrochemical Characteristics of Li4Ti5O12/Ag Composite Nanobelts Prepared via Electrospinning. Russian Journal of Physical Chemistry A, 2019, 93, 144-150.	0.1	6
33	Flexible sandwich-shaped composite film with simultaneous double electrically conductive anisotropy, magnetism and dual-color fluorescence. New Journal of Chemistry, 2019, 43, 7984-7996.	1.4	8
34	High pairing rate Janus-structured microfibers and array: high-efficiency conjugate electrospinning fabrication, structure analysis and co-instantaneous multifunctionality of anisotropic conduction, magnetism and enhanced red fluorescence. RSC Advances, 2019, 9, 10679-10692.	1.7	17
35	Preparation of Janus microfibers with magnetic and fluorescence functionality via conjugate electro-spinning. Materials and Design, 2019, 170, 107701.	3.3	39
36	A neoteric sandwich-configurational composite film offering synchronous conductive aeolotropy, superparamagnetism and dual-color fluorescence. Nanoscale Advances, 2019, 1, 1497-1509.	2.2	7

#	Article	IF	CITATIONS
37	Anisotropic Conductive Membrane with Superparamagnetism and Color-Tunable Luminescence. Russian Journal of Physical Chemistry A, 2019, 93, 2444-2451.	0.1	4
38	Novel sandwich-structured composite pellicle displays high and tuned electrically conductive anisotropy, magnetism and photoluminescence. Chemical Engineering Journal, 2019, 361, 713-724.	6.6	34
39	Employing novel Janus nanobelts to achieve anisotropic conductive array pellicle functionalized by superparamagnetism and green fluorescence. Journal of Materials Science: Materials in Electronics, 2019, 30, 4219-4230.	1.1	1
40	Conjugate Electrospinning Construction of Microyarns with Synchronous Color-Tuned Photoluminescence and Tunable Electrical Conductivity. Journal of Electronic Materials, 2019, 48, 1511-1521.	1.0	3
41	Up/down conversion luminescence and energy transfer of Er3+/Tb3+ activated NaGd(WO4)2 green emitting phosphors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 88-97.	2.0	6
42	Electrospinning assembly of 1D peculiar Janus nanofiber into 2D anisotropic electrically conductive array membrane synchronously endued with tuned superparamagnetism and color-tunable luminescence. Journal of Materials Science: Materials in Electronics, 2018, 29, 10284-10300.	1.1	11
43	Enhancement of electrochemical properties of niobiumâ€doped LiFePO ₄ /C synthesized by sol–gel method. Journal of the Chinese Chemical Society, 2018, 65, 977-981.	0.8	7
44	Peculiarly Structured Janus Nanofibers Display Synchronous and Tuned Trifunctionality of Enhanced Luminescence, Electrical Conduction, and Superparamagnetism. ChemPlusChem, 2018, 83, 108-116.	1.3	10
45	Au-doped Li _{1.2} Ni _{0.7} Co _{0.1} Mn _{0.2} O ₂ electrospun nanofibers: synthesis and enhanced capacity retention performance for lithium-ion batteries. RSC Advances, 2018, 8, 4112-4118.	1.7	12
46	Flexible special-structured Janus nanofiber synchronously endued with tunable trifunctionality of enhanced photoluminescence, electrical conductivity and superparamagnetism. Journal of Materials Science: Materials in Electronics, 2018, 29, 7119-7129.	1.1	13
47	Impact of CTAB on morphology and electrochemical performance of MoS2 nanoflowers with improved lithium storage properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 3631-3639.	1.1	13
48	Room-temperature synthesis, controllable morphology and optical characteristics of narrow-band red phosphor K ₂ LiGaF ₆ :Mn ⁴⁺ . CrystEngComm, 2018, 20, 2183-2192.	1.3	18
49	Integrating photoluminescence, magnetism and thermal conversion for potential photothermal therapy and dual-modal bioimaging. Journal of Colloid and Interface Science, 2018, 510, 292-301.	5.0	25
50	Conjugate electrospinning-fabricated nanofiber yarns simultaneously endowed with bifunctionality of magnetism and enhanced fluorescence. Journal of Materials Science, 2018, 53, 2290-2302.	1.7	27
51	Assembling exceptionally-structured Janus nanoribbons into a highly anisotropic electrically conductive array film that exhibits red fluorescence and superparamagnetism. New Journal of Chemistry, 2018, 42, 18708-18716.	1.4	12
52	Electrospinning Construction of Flexible Composite Nanoribbons with Color-Tunable Fluorescence. Russian Journal of Physical Chemistry A, 2018, 92, 2257-2264.	0.1	2
53	Using special Janus nanobelt as constitutional unit to construct anisotropic conductive array membrane for concurrently affording color-tunable luminescence and superparamagnetism. RSC Advances, 2018, 8, 31608-31617.	1.7	16
54	Structure, Morphology, and Composition of Mn3N2/MnO/C Composite Anode Materials for Li-lon Batteries. Russian Journal of Physical Chemistry A, 2018, 92, 1823-1829.	0.1	3

#	Article	IF	CITATIONS
55	High performance Co3O4/Li2TiO3 composite hollow nanofibers as anode material for Li-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 14222-14231.	1.1	3
56	Controlled Morphology, Improved Photoluminescent Properties, and Application of an Efficient Non-rare Earth Deep Red-Emitting Phosphor. Inorganic Chemistry, 2018, 57, 9892-9901.	1.9	57
57	Facile synthesis of Fe3O4/NiFe2O4 nanosheets with enhanced Lithium-ion storage by one-step chemical dealloying. Journal of Materials Science, 2018, 53, 15631-15642.	1.7	27
58	In situ synthesis of homogeneous Ce ₂ S ₃ /MoS ₂ composites and their electrochemical performance for lithium ion batteries. RSC Advances, 2017, 7, 6309-6314.	1.7	7
59	A novel strategy to achieve NaGdF ₄ :Eu ³⁺ nanofibers with colorâ€tailorable luminescence and paramagnetic performance. Journal of the American Ceramic Society, 2017, 100, 2034-2044.	1.9	16
60	Electrospun Li4Ti5O12/Li2TiO3 composite nanofibers for enhanced high-rate lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2779-2790.	1.2	22
61	Dual-mode blue emission, enhanced up-conversion luminescence and paramagnetic properties of ytterbium and thulium-doped Ba 2 GdF 7 multifunctional nanophosphors. Journal of Colloid and Interface Science, 2017, 501, 215-221.	5.0	14
62	Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning. Physical Chemistry Chemical Physics, 2017, 19, 118-126.	1.3	9
63	Fabrication of Ce2S3/MoS2 composites via recrystallization-sulfurization method and their improved electrochemical performance for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2017, 28, 12297-12305.	1.1	5
64	Electrospun Li3V2(PO4)3Nanobelts: Synthesis and Electrochemical Properties as Cathode Materials of Lithium-Ion Batteries. Journal of the Chinese Chemical Society, 2017, 64, 557-564.	0.8	5
65	Hydrothermal synthesis, down-/enhanced up-converting, color tuning luminescence, energy transfer and paramagnetic properties of Ln ³⁺ (Ln = Eu/Dy, Yb/Ho)-doped Ba ₂ GdF ₇ multifunctional nanophosphors. New Journal of Chemistry, 2017, 41, 1609-1617.	1.4	18
66	Emerging La2O2CN2 matrix with controllable 3D morphology for photoluminescence applications. CrystEngComm, 2017, 19, 6498-6505.	1.3	5
67	Hydrothermal synthesis of narrow-band red emitting K ₂ NaAlF ₆ :Mn ⁴⁺ phosphor for warm-white LED applications. RSC Advances, 2017, 7, 45834-45842.	1.7	33
68	Dual-mode blue emission, paramagnetic properties of Yb3+â€"Tm3+ co-doped GdOCl difunctional nanostructures. Journal of Materials Science: Materials in Electronics, 2017, 28, 19038-19050.	1.1	3
69	Novel nanofiber yarns synchronously endued with tri-functional performance of superparamagnetism, electrical conductivity and enhanced fluorescence prepared by conjugate electrospinning. RSC Advances, 2017, 7, 48702-48711.	1.7	16
70	Assembly of 1D coaxial nanoribbons into 2D multicolor luminescence array membrane endowed with tunable anisotropic electrical conductivity and magnetism via electrospinning. RSC Advances, 2017, 7, 32850-32860.	1.7	10
71	Highly active and porous single-crystal In ₂ O ₃ nanosheet for NO _x gas sensor with excellent response at room temperature. RSC Advances, 2017, 7, 33419-33425.	1.7	39
72	La2O2CN2:Yb3+/Tm3+ nanofibers and nanobelts: novel fabrication technique, structure and upconversion luminescence. Journal of Materials Science: Materials in Electronics, 2017, 28, 16282-16291.	1.1	2

#	Article	IF	CITATIONS
73	Novel flexible coaxial nanoribbons arrays to help achieve tuned and enhanced simultaneous multicolor luminescence–electricity–magnetism trifunctionality. Journal of Materials Science: Materials in Electronics, 2017, 28, 16762-16775.	1.1	1
74	Double anisotropic electrically conductive flexible Janus-typed membranes. Nanoscale, 2017, 9, 18918-18930.	2.8	59
75	An electrospun flexible Janus nanoribbon array endowed with simultaneously tuned trifunctionality of electrically conductive anisotropy, photoluminescence and magnetism. New Journal of Chemistry, 2017, 41, 13983-13992.	1.4	19
76	Bi2MoO6/RGO composite nanofibers: facile electrospinning fabrication, structure, and significantly improved photocatalytic water splitting activity. Journal of Materials Science: Materials in Electronics, 2017, 28, 543-552.	1.1	26
77	Hydrothermal synthesis, multicolor tunable luminescence and energy transfer of Eu3+ or/and Tb3+ activated NaY(WO4)2 nanophosphors. Journal of Materials Science: Materials in Electronics, 2016, 27, 10780-10790.	1.1	13
78	Dual-mode, tunable color, enhanced upconversion luminescence and magnetism of multifunctional BaGdF $<$ sub $>$ 5 $<$ /sub $>:$ Ln $<$ sup $>$ 3+ $<$ /sup $>$ (Ln = Yb/Er/Eu) nanophosphors. Physical Chemistry Chemical Physics, 2016, 18, 21518-21526.	1.3	34
79	Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination. Journal of Materials Science: Materials in Electronics, 2016, 27, 11666-11673.	1.1	8
80	Tunable multicolor luminescence and white light emission realized in Eu ³⁺ mono-activated GdF ₃ nanofibers with paramagnetic performance. RSC Advances, 2016, 6, 113045-113052.	1.7	16
81	Fe ₃ O ₄ /rGO nanocomposite: synthesis and enhanced NO _x gas-sensing properties at room temperature. RSC Advances, 2016, 6, 37085-37092.	1.7	26
82	Doping Eu ³⁺ /Sm ³⁺ into CaWO ₄ :Tm ³⁺ , Dy ³⁺ phosphors and their luminescence properties, tunable color and energy transfer. RSC Advances, 2016, 6, 26239-26246.	1.7	22
83	Flexible Janus nanoribbons to help obtain simultaneous color-tunable enhanced photoluminescence, magnetism and electrical conduction trifunctionality. RSC Advances, 2016, 6, 36180-36191.	1.7	11
84	NaGdF ₄ :Dy ³⁺ nanofibers and nanobelts: facile construction technique, structure and bifunctionality of luminescence and enhanced paramagnetic performances. Physical Chemistry Chemical Physics, 2016, 18, 27536-27544.	1.3	35
85	Electrospun Li2MnO3-modified Li1.2NixCo0.1Mn0.9-xO2 nanofibers: Synthesis and enhanced electrochemical performance for lithium-ion batteries. Electronic Materials Letters, 2016, 12, 804-811.	1.0	10
86	Novel electrospun bilayered composite fibrous membrane endowed with tunable and simultaneous quadrifunctionality of electricity–magnetism at one layer and upconversion luminescence–photocatalysis at the other layer. RSC Advances, 2016, 6, 96084-96092.	1.7	6
87	Novel synthetic strategy towards NiO/Ni ₃ N composite hollow nanofibers for superior NO _x gas-sensing properties at room temperature. RSC Advances, 2016, 6, 97313-97321.	1.7	7
88	Novel Electrospun Dual-Layered Composite Nanofibrous Membrane Endowed with Electricity–Magnetism Bifunctionality at One Layer and Photoluminescence at the Other Layer. ACS Applied Materials & Dr. Interfaces, 2016, 8, 26226-26234.	4.0	36
89	Novel construction technique, structure and photocatalysis of Y ₂ O ₂ CN ₂ nanofibers and nanobelts. RSC Advances, 2016, 6, 43322-43329.	1.7	11
90	Synthesis of \hat{l}_{\pm} -Fe ₂ O ₃ , Fe ₃ O ₄ and Fe ₂ N magnetic hollow nanofibers as anode materials for Li-ion batteries. RSC Advances, 2016, 6, 111447-111456.	1.7	30

#	Article	IF	Citations
91	Electrospinning construction of Bi ₂ WO ₆ /RGO composite nanofibers with significantly enhanced photocatalytic water splitting activity. RSC Advances, 2016, 6, 64741-64748.	1.7	36
92	BaTiF ₆ :Mn ⁴⁺ bifunctional microstructures with photoluminescence and photocatalysis: hydrothermal synthesis and controlled morphology. CrystEngComm, 2016, 18, 5842-5851.	1.3	39
93	A new scheme to acquire BaY2F8:Er3+ nanofibers with upconversion luminescence. Journal of Materials Science: Materials in Electronics, 2016, 27, 9152-9158.	1.1	10
94	A new route to fabricate PbS nanofibers and PbSe nanofibers via electrospinning combined with double-crucible technique. Journal of Materials Science: Materials in Electronics, 2016, 27, 9772-9779.	1.1	3
95	A new strategy to directly construct hybrid luminescence–photothermal–magnetism multifunctional nanocomposites for cancer up-conversion imaging and photothermal therapy. RSC Advances, 2016, 6, 3250-3258.	1.7	7
96	Flexible Tricolor Flag-liked Microribbons Array with Enhanced Conductive Anisotropy and Multifunctionality. Scientific Reports, 2015, 5, 14583.	1.6	24
97	Electrospun Flexible Coaxial Nanoribbons Endowed With Tuned and Simultaneous Fluorescent Color-Electricity-Magnetism Trifunctionality. Scientific Reports, 2015, 5, 14052.	1.6	28
98	Tunable color and energy transfer of Tm ³⁺ and Ho ³⁺ co-doped NaGdF ₄ nanoparticles. RSC Advances, 2015, 5, 50611-50616.	1.7	14
99	Cadmium oxide nanofibers and nanobelts and their photodegradation. , 2015, , .		1
100	A Technique to Fabricate La $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 2 $<$ /sub $>$ CN $<$ sub $>$ 2 $<$ /sub $>$:Tb $<$ sup $>$ 3+ $<$ /sup $>$ Nanofibers and Nanoribbons with the Same Morphologies as the Precursors. European Journal of Inorganic Chemistry, 2015, 389-396.	1.0	12
101	Flexible Janus Nanofiber to Help Achieve Simultaneous Enhanced Magnetism-Upconversion Luminescence Bifunction. IEEE Nanotechnology Magazine, 2015, 14, 243-249.	1.1	14
102	In situ synthesis of porous Fe3O4/C composite nanobelts with tunable magnetism, electrical conduction and highly efficient adsorption characteristics. Journal of Materials Science: Materials in Electronics, 2015, 26, 2457-2465.	1.1	4
103	Dy3+ and Eu3+ complexes co-doped flexible composite nanofibers to achieve tunable fluorescent color. Journal of Materials Science: Materials in Electronics, 2015, 26, 3112-3118.	1.1	7
104	Tunable and enhanced simultaneous photoluminescence–electricity–magnetism trifunctionality successfully realized in flexible Janus nanofiber. Journal of Materials Science: Materials in Electronics, 2015, 26, 2658-2667.	1.1	3
105	Single Flexible Janus Nanobelts to Realize Tunable and Enhanced Simultaneous Photoluminescent, Electrical, and Magnetic Trifunctionality. ChemPlusChem, 2015, 80, 568-575.	1.3	10
106	Fabrication and Upconversion Luminescent Properties of Er ³⁺ â€Doped and Er ³⁺ /Yb ³⁺ Codoped La ₂ O ₂ CN ₂ Nanofibers. Journal of the American Ceramic Society, 2015, 98, 1215-1222.	1.9	15
107	Reddish-orange-emitting and paramagnetic properties of GdVO ₄ :Sm ³⁺ /Eu ³⁺ multifunctional nanomaterials. New Journal of Chemistry, 2015, 39, 8282-8290.	1.4	24
108	Flexible composite nanobelts: facile electrospinning construction, structure and color-tunable photoluminescence. Journal of Materials Science: Materials in Electronics, 2015, 26, 8413-8420.	1.1	18

#	Article	IF	CITATIONS
109	Electrospinning-derived [C/Fe3O4]@C coaxial nanocables with tuned magnetism, electrical conduction and highly efficient adsorption trifunctionality. Journal of Materials Science: Materials in Electronics, 2015, 26, 8054-8064.	1.1	9
110	Flexible Janus nanofibers: a feasible route to realize simultaneously tuned magnetism and enhanced color-tunable luminescence bifunctionality. RSC Advances, 2015, 5, 35948-35957.	1.7	11
111	Synthesis and luminescence properties of Yb ³⁺ â€"Er ³⁺ co-doped LaOCl nanobelts via electrospinning combined with chlorination technique. Journal of Experimental Nanoscience, 2015, 10, 947-964.	1.3	4
112	Flexible Janus Nanoribbons Array: A New Strategy to Achieve Excellent Electrically Conductive Anisotropy, Magnetism, and Photoluminescence. Advanced Functional Materials, 2015, 25, 2436-2443.	7.8	123
113	Color-tunable luminescence nanofibers endowed with simultaneously tuned electricity–magnetism performance. Journal of Materials Science: Materials in Electronics, 2015, 26, 5994-6003.	1.1	12
114	Magnetism and white-light-emission bifunctionality simultaneously assembled into flexible Janus nanofiber via electrospinning. Journal of Materials Science, 2015, 50, 7884-7895.	1.7	15
115	Impact of pH on Morphology and Electrochemical Performance of LiFePO4as Cathode for Lithium-ion Batteries. Integrated Ferroelectrics, 2015, 164, 98-102.	0.3	2
116	A direct warm-white-light CaLa ₂ (MoO ₄) ₄ : Tb ³⁺ , Sm ³⁺ phosphor with tunable color tone via energy transfer for white LEDs. RSC Advances, 2015, 5, 77866-77872.	1.7	31
117	Flexible ribbon-shaped coaxial electrical conductive nanocable array endowed with magnetism and photoluminescence. RSC Advances, 2015, 5, 2523-2530.	1.7	19
118	A novel scheme to obtain tunable fluorescent colors based on electrospun composite nanofibers. Journal of Materials Science: Materials in Electronics, 2015, 26, 336-344.	1.1	10
119	Luminescence, energy-transfer and tunable color properties of single-component Tb ³⁺ and/or Sm ³⁺ doped NaGd(WO ₄) ₂ phosphors with UV excitation for use as WLEDs. RSC Advances, 2014, 4, 58708-58716.	1.7	59
120	Fabrication of Magnetic–Fluorescent Bifunctional Flexible Coaxial Nanobelts by Electrospinning Using a Modified Coaxial Spinneret. ChemPlusChem, 2014, 79, 290-297.	1.3	51
121	Structure Design and Performance of LiNi _x Co _y Mn _{1â€xâ€y} O ₂ Cathode Materials for Lithiumâ€ion Batteries: A Review. Journal of the Chinese Chemical Society, 2014, 61, 1071-1083.	0.8	20
122	Synthesis and luminescence properties of Yb3+–Er3+ co-doped LaOCl nanostructures. Journal of Materials Science, 2014, 49, 2919-2931.	1.7	19
123	Fabrication of Er3+-doped LaOCI nanostructures with upconversion and near-infrared luminescence performances. Journal of Materials Science: Materials in Electronics, 2014, 25, 46-56.	1.1	13
124	Parallel spinnerets electrospinning construct and properties of electrical-luminescent bifunctional bistrand-aligned nanobundles. Journal of Materials Science, 2014, 49, 2171-2179.	1.7	9
125	Photoluminescence–electricity–magnetism trifunction simultaneously assembled into one flexible nanofiber. Journal of Materials Science: Materials in Electronics, 2014, 25, 1309-1316.	1.1	9
126	Electrospinning fabrication and characterization of magnetic-upconversion fluorescent bifunctional core–shell nanofibers. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	19

#	Article	IF	Citations
127	Study on terbium doped lanthanum oxybromide luminescent nanoribbons and nanofibers. Journal of Materials Science: Materials in Electronics, 2014, 25, 1657-1663.	1.1	2
128	Facile electrospinning fabrication and photoluminescence of LaOI:Tb3+ one-dimensional nanomaterials. Journal of Materials Science: Materials in Electronics, 2014, 25, 1053-1062.	1.1	6
129	Preparation and electrochemical performances of LiFePO4/C composite nanobelts via facile electrospinning. Journal of Materials Science: Materials in Electronics, 2014, 25, 1040-1046.	1.1	9
130	Flexible Janus Nanofibers: Facile Electrospinning Construction and Enhanced Luminescent–Electrical–Magnetic Trifunctionality. ChemPlusChem, 2014, 79, 690-697.	1.3	28
131	A new strategy to assemble enhanced magnetic–photoluminescent bifunction into a flexible nanofiber. Journal of Materials Science, 2014, 49, 5418-5426.	1.7	9
132	Controlled synthesis and tunable photoluminescence properties of LaOBr:Eu3+ nanostructures. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	0
133	A new route to fabricate LaOI:Yb3+/Er3+ nanostructures via inheriting the morphologies of the precursors. CrystEngComm, 2014, 16, 10292-10299.	1.3	2
134	New strategy to achieve La ₂ O ₂ CN ₂ :Eu ³⁺ novel luminescent one-dimensional nanostructures. CrystEngComm, 2014, 16, 5409-5417.	1.3	12
135	Construction of Au@NaYF ₄ :Yb ³⁺ ,Er ³⁺ /Ho ³⁺ bifunctional hybrid nanocomposites with upconversion luminescence and photothermal properties. RSC Advances, 2014, 4, 62802-62808.	1.7	19
136	A single flexible nanofiber to obtain simultaneous tunable color-electricity bifunctionality. Journal of Materials Science: Materials in Electronics, 2014, 25, 5395-5402.	1.1	10
137	Preparation of LaOBr:Er3+ Up-conversion Luminescent Nanobelts by Electrospinning Then Bromination. Journal of Electronic Materials, 2014, 43, 3701-3707.	1.0	8
138	A single nanobelt to achieve simultaneous photoluminescence–electricity–magnetism trifunction. Journal of Materials Science: Materials in Electronics, 2014, 25, 2279-2286.	1.1	11
139	A new tactics to fabricate flexible nanobelts with enhanced magnetic–luminescent bifunction. Journal of Materials Science: Materials in Electronics, 2014, 25, 2561-2568.	1.1	1
140	Synthesis of SnO2@SnS2 core–shell nanorods by double crucible method and their photocatalysis. Journal of Materials Science: Materials in Electronics, 2014, 25, 3801-3806.	1.1	8
141	Janus nanofiber: a new strategy to achieve simultaneous enhanced magnetic-photoluminescent bifunction. Journal of Materials Science: Materials in Electronics, 2014, 25, 4024-4032.	1.1	19
142	Tunable luminescence and energy transfer properties of NaGdF ₄ :Dy ³⁺ , Eu ³⁺ nanophosphors. New Journal of Chemistry, 2014, 38, 4901-4907.	1.4	69
143	Synthesis and upconversion luminescence properties of YF3:Yb3+/Er3+ hollow nanofibers derived from Y2O3:Yb3+/Er3+ hollow nanofibers. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	23
144	Electrospinning preparation and properties of magnetic-photoluminescent bifunctional bistrand-aligned composite nanofibers bundles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	28

#	Article	IF	CITATIONS
145	Fabrication and luminescence properties of YF3:Eu3+ hollow nanofibers via coaxial electrospinning combined with fluorination technique. Journal of Materials Science, 2013, 48, 5930-5937.	1.7	31
146	Electrospinning fabrication and electrochemical properties of LiFePO4/C composite nanofibers. Journal of Materials Science: Materials in Electronics, 2013, 24, 4263-4269.	1.1	16
147	Fabrication and luminescence of YF3:Tb3+ hollow nanofibers. Journal of Materials Science: Materials in Electronics, 2013, 24, 3041-3048.	1.1	22
148	Synthesis and luminescence properties of LaOCl:Eu3+ nanostructures via the combination of electrospinning with chlorination technique. Journal of Materials Science: Materials in Electronics, 2013, 24, 4745-4756.	1.1	24
149	Coaxial electrospinning fabrication and electrochemical properties of LiFePO4/C/Ag composite hollow nanofibers. Journal of Materials Science: Materials in Electronics, 2013, 24, 4718-4724.	1.1	19
150	Synthesis of Y2O2S:Eu3+ luminescent nanobelts via electrospinning combined with sulfurization technique. Journal of Materials Science, 2013, 48, 644-650.	1.7	61
151	Electrospinning preparation of LaOBr:Tb3+ nanostructures and their photoluminescence properties. Journal of Materials Science, 2013, 48, 2557-2565.	1.7	36
152	Electrospinning preparation and properties of Fe3O4/Eu(BA)3phen/PVP magnetic-photoluminescent bifunctional composite nanofibers. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	45
153	Electrospinning preparation and properties of magnetic-photoluminescent bifunctional coaxial nanofibers. Journal of Materials Chemistry, 2012, 22, 14438.	6.7	88