
Carlos Baleizão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6132981/publications.pdf Version: 2024-02-01

<u>CARLOS ΒΑΙ ΕΙΖΑξΟ</u>

#	Article	IF	CITATIONS
1	Cellulose acetate fibres loaded with daptomycin for metal implant coatings. Carbohydrate Polymers, 2022, 276, 118733.	5.1	4
2	Nanoscale design in biomineralization for developing new biomaterials. , 2022, , 345-384.		0
3	Drug Delivery from PCL/Chitosan Multilayer Coatings for Metallic Implants. ACS Omega, 2022, 7, 23096-23106.	1.6	7
4	GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation. Biofabrication, 2021, 13, 035012.	3.7	48
5	Mesoporous Silica Nanoparticles Modified inside and out for ON:OFF pH-Modulated Cargo Release. Pharmaceutics, 2021, 13, 716.	2.0	7
6	Two-photon absorption of perylene-3,4,9,10-tetracarboxylic acid diimides: Effect of substituents in the bay. Dyes and Pigments, 2021, 193, 109470.	2.0	12
7	Platelet lysates-based hydrogels incorporating bioactive mesoporous silica nanoparticles for stem cell osteogenic differentiation. Materials Today Bio, 2021, 9, 100096.	2.6	19
8	Bioactive silica nanoparticles with calcium and phosphate for single dose osteogenic differentiation. Materials Science and Engineering C, 2020, 107, 110348.	3.8	19
9	Silica nanocarriers with user-defined precise diameters by controlled template self-assembly. Journal of Colloid and Interface Science, 2020, 561, 609-619.	5.0	25
10	Efficient Singleâ€Dose Induction of Osteogenic Differentiation of Stem Cells Using Multiâ€Bioactive Hybrid Nanocarriers. Advanced Biology, 2020, 4, e2000123.	3.0	7
11	Grafting with RAFT—gRAFT Strategies to Prepare Hybrid Nanocarriers with Core-shell Architecture. Polymers, 2020, 12, 2175.	2.0	9
12	Osteogenic Differentiation: Efficient Singleâ€Dose Induction of Osteogenic Differentiation of Stem Cells Using Multiâ€Bioactive Hybrid Nanocarriers (Adv. Biosys. 11/2020). Advanced Biology, 2020, 4, 2070112.	3.0	0
13	Synthesis and fluorescence properties of aminocyanopyrrole and aminocyanothiophene esthers for biomedical and bioimaging applications. Journal of Molecular Structure, 2020, 1209, 127974.	1.8	2
14	Silica nanoparticles surface charge modulation of the electroactive phase content and physical-chemical properties of poly(vinylidene fluoride) nanocomposites. Composites Part B: Engineering, 2020, 185, 107786.	5.9	14
15	Chemiluminescence of naphthalene analogues of luminol in solution and micellar media. Dyes and Pigments, 2019, 168, 341-346.	2.0	3
16	Hybrid Mesoporous Nanoparticles for pH-Actuated Controlled Release. Nanomaterials, 2019, 9, 483.	1.9	14
17	Temperature-responsive copolymers without compositional drift by RAFT copolymerization of 2-(acryloyloxy)ethyl trimethylammonium chloride and 2-(diethylamino)ethyl acrylate. Polymer Chemistry, 2019, 10, 2106-2116.	1.9	7
18	Boron-chelating membranes based in hybrid mesoporous silica nanoparticles for water purification. Materials and Design, 2018, 141, 407-413.	3.3	24

#	Article	IF	CITATIONS
19	Multifunctional Platform Based on Electroactive Polymers and Silica Nanoparticles for Tissue Engineering Applications. Nanomaterials, 2018, 8, 933.	1.9	16
20	On the Structure of Amorphous Mesoporous Silica Nanoparticles by Aberration orrected STEM. Small, 2018, 14, e1802180.	5.2	12
21	Temperature-responsive fibres of cellulose-based copolymers. Polymer Chemistry, 2018, 9, 3615-3623.	1.9	12
22	Optical sensing of aqueous boron based on polymeric hydroxytriphenylene derivatives. RSC Advances, 2017, 7, 4627-4634.	1.7	3
23	Smart polymeric nanoparticles for boron scavenging. Chemical Engineering Journal, 2017, 319, 31-38.	6.6	7
24	Artefact-free Evaluation of Metal Enhanced Fluorescence in Silica Coated Gold Nanoparticles. Scientific Reports, 2017, 7, 2440.	1.6	57
25	Functional Group Coverage and Conversion Quantification in Nanostructured Silica by ¹ H NMR. Analytical Chemistry, 2017, 89, 681-687.	3.2	48
26	Hybrid mesoporous silica nanocarriers with thermovalve-regulated controlled release. Nanoscale, 2017, 9, 13485-13494.	2.8	43
27	Smart Polymer Nanoparticles for High-Performance Water-Based Coatings. , 2016, , 619-645.		2
28	Electroluminescence response promoted by dispersion and interaction of perylene-3,4,9,10-tetracarboxylic dianhydride inside MOF5. RSC Advances, 2016, 6, 35191-35196.	1.7	11
29	Multifunctional Hybrid Silica Nanoparticles with a Fluorescent Core and Active Targeting Shell for Fluorescence Imaging Biodiagnostic Applications. European Journal of Inorganic Chemistry, 2015, 2015, 4579-4587.	1.0	29
30	Effect of Molecular Stacking on Exciton Diffusion in Crystalline Organic Semiconductors. Journal of the American Chemical Society, 2015, 137, 7104-7110.	6.6	37
31	Hybrid smart mesoporous silica nanoparticles for theranostics. Nanomedicine, 2015, 10, 2311-2314.	1.7	26
32	Impact of Molecular Organization on Exciton Diffusion in Photosensitive Single-Crystal Halogenated Perylenediimides Charge Transfer Interfaces. ACS Applied Materials & Interfaces, 2015, 7, 27720-27729.	4.0	8
33	Functional Films from Silica/Polymer Nanoparticles. Materials, 2014, 7, 3881-3900.	1.3	85
34	NIR and visible perylenediimide-silica nanoparticles for laser scanning bioimaging. Dyes and Pigments, 2014, 110, 227-234.	2.0	28
35	Strong green chemiluminescence from naphthalene analogues of luminol. New Journal of Chemistry, 2014, 38, 2258.	1.4	13
36	Controlled release of singlet oxygen using diphenylanthracene functionalized polymer nanoparticles. Chemical Communications, 2014, 50, 3317.	2.2	50

#	Article	IF	CITATIONS
37	A new optical boron detection method. Analytical Methods, 2014, 6, 5450-5453.	1.3	8
38	Highly Efficient Singlet–Singlet Energy Transfer in Lightâ€Harvesting [60,70]Fullerene–4â€Aminoâ€1,8â€naphthalimide Dyads. ChemPhysChem, 2013, 14, 2717-2724.	1.0	9
39	Sensing and Imaging of Oxygen with Parts per Billion Limits of Detection and Based on the Quenching of the Delayed Fluorescence of ¹³ C ₇₀ Fullerene in Polymer Hosts. Analytical Chemistry, 2013, 85, 1300-1304.	3.2	68
40	Formation of hybrid films from perylenediimide-labeled core–shell silica–polymer nanoparticles. Journal of Colloid and Interface Science, 2013, 401, 14-22.	5.0	11
41	Sc(OTf)3 promoted multicomponent synthesis of fluorescent imidazo[1,2-c]pyrazolo[3,4-d]pyrimidine. Tetrahedron Letters, 2013, 54, 4781-4784.	0.7	15
42	High performance NIR fluorescent silica nanoparticles for bioimaging. RSC Advances, 2013, 3, 9171.	1.7	29
43	New heterogeneous catalysts for the synthesis of chiral amino acids: Functionalization of organic resins with chiral salen complexes. Catalysis Today, 2013, 218-219, 65-69.	2.2	16
44	New Visible and NIR Highly Photostable Fluorescent Silica Nanoparticles for Laser Scanning Imaging Applications. Microscopy and Microanalysis, 2013, 19, 105-106.	0.2	2
45	Intrinsically Fluorescent Silica Nanocontainers: A Promising Theranostic Platform. Microscopy and Microanalysis, 2013, 19, 1216-1221.	0.2	19
46	Methods for the analysis of complex fluorescence decays: sum of Becquerel functions versus sum of exponentials. Methods and Applications in Fluorescence, 2013, 1, 015002.	1.1	35
47	Photophysical Study of Bis(naphthalimide)â^'Amine Conjugates: Toward Molecular Design of Excimer Emission Switching. Journal of Physical Chemistry A, 2011, 115, 1092-1099.	1.1	25
48	Enzyme kinetics with a twist. Journal of Mathematical Chemistry, 2011, 49, 1949-1960.	0.7	5
49	The Brightest Fullerene: A New Isotope Effect in Molecular Fluorescence and Phosphorescence. ChemPhysChem, 2011, 12, 1247-1250.	1.0	20
50	Fluorescence of fullerene C70 in ionic liquids. Chemical Physics Letters, 2010, 497, 43-47.	1.2	19
51	External Heavyâ€Atom Effect on the Prompt and Delayed Fluorescence of [70]Fullerenes. ChemPhysChem, 2010, 11, 3133-3140.	1.0	19
52	Oxygen-proof fluorescence temperature sensing with pristine C ₇₀ encapsulated in polymernanoparticles. Journal of Materials Chemistry, 2010, 20, 1192-1197.	6.7	44
53	How Fast is a Fast Equilibrium? A New View of Reversible Reactions. ChemPhysChem, 2009, 10, 199-205.	1.0	14
54	Synthesis and Characterization of Perylenediimide Labeled Coreâ^'Shell Hybrid Silicaâ^'Polymer Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 18082-18090.	1.5	42

#	Article	IF	CITATIONS
55	<i>Thermally Activated Delayed Fluorescence in Fullerenes</i> . Annals of the New York Academy of Sciences, 2008, 1130, 224-234.	1.8	31
56	Dual Fluorescence Sensor for Trace Oxygen and Temperature with Unmatched Range and Sensitivity. Analytical Chemistry, 2008, 80, 6449-6457.	3.2	222
57	Recent Developments in the Thermally Activated Delayed Fluorescence of Fullerenes. ECS Transactions, 2008, 13, 3-12.	0.3	0
58	Thermally activated delayed fluorescence as a cycling process between excited singlet and triplet states: Application to the fullerenes. Journal of Chemical Physics, 2007, 126, 204510.	1.2	106
59	Fluorescence of Fullerenes. Springer Series on Fluorescence, 2007, , 151-184.	0.8	6
60	An Optical Thermometer Based on the Delayed Fluorescence of C70. Chemistry - A European Journal, 2007, 13, 3643-3651.	1.7	92
61	Optical Sensing and Imaging of Trace Oxygen with Record Response. Angewandte Chemie - International Edition, 2007, 46, 2317-2319.	7.2	86
62	Chiral Salen Complexes:Â An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts. Chemical Reviews, 2006, 106, 3987-4043.	23.0	641
63	Intra- and Intermolecular Heavy-Atom Effects on the Fluorescence Properties of Brominated C60Polyads. Journal of Physical Chemistry B, 2006, 110, 12809-12814.	1.2	32
64	Calix[4]azacrowns as Novel Molecular Scaffolds for the Generation of Visible and Near-Infrared Lanthanide Luminescence. Inorganic Chemistry, 2006, 45, 2652-2660.	1.9	60
65	A Molecular Thermometer Based on the Delayed Fluorescence of C70 Dispersed in a Polystyrene Film. Journal of Fluorescence, 2006, 16, 215-219.	1.3	16
66	Polymer-bound aluminium salen complex as reusable catalysts for CO2 insertion into epoxides. Tetrahedron, 2005, 61, 12131-12139.	1.0	87
67	Chiral Vanadyl Salen Complex Anchored on Supports as Recoverable Catalysts for the Enantioselective Cyanosilylation of Aldehydes. Comparison Among Silica, Single Wall Carbon Nanotube, Activated Carbon and Imidazolium Ion as Support ChemInform, 2005, 36, no.	0.1	0
68	Vanadyl salen complexes covalently anchored to single-wall carbon nanotubes as heterogeneous catalysts for the cyanosilylation of aldehydes. Journal of Catalysis, 2004, 221, 77-84.	3.1	167
69	CO fixation using recoverable chromium salen catalysts: use of ionic liquids as cosolvent or high-surface-area silicates as supports. Journal of Catalysis, 2004, 228, 254-258.	3.1	111
70	Oxime Carbapalladacycle Covalently Anchored to High Surface Area Inorganic Supports or Polymers as Heterogeneous Green Catalysts for the Suzuki Reaction in Water ChemInform, 2004, 35, no.	0.1	0
71	Friedel–Crafts reactions in ionic liquids: the counter-ion effect on the dealkylation and acylation of methyl dehydroabietate. Tetrahedron Letters, 2004, 45, 4375-4377.	0.7	26
72	Chiral vanadyl salen complex anchored on supports as recoverable catalysts for the enantioselective cyanosilylation of aldehydes. Comparison among silica, single wall carbon nanotube, activated carbon and imidazolium ion as support. Tetrahedron, 2004, 60, 10461-10468.	1.0	123

#	Article	IF	CITATIONS
73	Periodic mesoporous organosilica incorporating a catalytically active vanadyl Schiff base complex in the framework. Journal of Catalysis, 2004, 223, 106-113.	3.1	142
74	Oxime Carbapalladacycle Covalently Anchored to High Surface Area Inorganic Supports or Polymers as Heterogeneous Green Catalysts for the Suzuki Reaction in Water. Journal of Organic Chemistry, 2004, 69, 439-446.	1.7	203
75	Chiral vanadyl Schiff base complex anchored on silicas as solid enantioselective catalysts for formation of cyanohydrins: optimization ofÂthe asymmetric induction by support modification. Journal of Catalysis, 2003, 215, 199-207.	3.1	114
76	An Oxime-Carbapalladacycle Complex Covalently Anchored to Silica as an Active and Reusable Heterogeneous Catalyst for Suzuki Cross-Coupling in Water ChemInform, 2003, 34, no.	0.1	1
77	Vanadyl salen complexes covalently anchored to an imidazolium ion as catalysts for the cyanosilylation of aldehydes in ionic liquids. Tetrahedron Letters, 2003, 44, 6813-6816.	0.7	94
78	Synthesis and catalytic activity of a chiral periodic mesoporous organosilica (ChiMO). Chemical Communications, 2003, , 1860-1861.	2.2	165
79	An oxime–carbapalladacycle complex covalently anchored to silica as an active and reusable heterogeneous catalyst for Suzuki cross-coupling in water. Chemical Communications, 2003, , 606-607.	2.2	143
80	Photochemistry of chiral pentacoordinated Al salen complexes. Chiral recognition in the quenching of photogenerated tetracoordinated Al salen transient by alkenes. Photochemical and Photobiological Sciences, 2003, 2, 386-392.	1.6	4
81	Ionic liquids as green solvents for the asymmetric synthesis of cyanohydrins catalysed by VO(salen) complexesDedicated to Prof. W. Adam on the occasion of his 65th Birthday Green Chemistry, 2002, 4, 272-274.	4.6	77
82	On the activity of chiral chromium salen complexes covalently bound to solid silicates for the enantioselective epoxide ring opening. Applied Catalysis A: General, 2002, 228, 279-288.	2.2	86