Viswanathan Palanisamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/61329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Monoxide Activates PERK-Regulated Autophagy to Induce Immunometabolic Reprogramming and Boost Antitumor T-cell Function. Cancer Research, 2022, 82, 1969-1990.	0.4	21
2	HuR as a molecular target for cancer therapeutics and immune-related disorders. Advanced Drug Delivery Reviews, 2022, 188, 114442.	6.6	21
3	Compendium of Methods to Uncover RNA-Protein Interactions In Vivo. Methods and Protocols, 2021, 4, 22.	0.9	5
4	Loss of CPAP causes sustained EGFR signaling and epithelial-mesenchymal transition in oral cancer. Oncotarget, 2021, 12, 807-822.	0.8	5
5	PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nature Communications, 2021, 12, 3444.	5.8	39
6	Centrosomal P4.1-associated protein (CPAP) positively regulates endocytic vesicular transport and lysosome targeting of EGFR. Scientific Reports, 2021, 11, 12689.	1.6	0
7	Fragile X-related protein family: a double-edged sword in neurodevelopmental disorders and cancer. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 409-424.	2.3	21
8	RNA binding protein FXR1-miR301a-3p axis contributes to p21WAF1 degradation in oral cancer. PLoS Genetics, 2020, 16, e1008580.	1.5	18
9	RNA binding protein FXR1-miR301a-3p axis contributes to p21WAF1 degradation in oral cancer. , 2020, 16, e1008580.		0
10	RNA binding protein FXR1-miR301a-3p axis contributes to p21WAF1 degradation in oral cancer. , 2020, 16, e1008580.		0
11	RNA binding protein FXR1-miR301a-3p axis contributes to p21WAF1 degradation in oral cancer. , 2020, 16, e1008580.		0
12	RNA binding protein FXR1-miR301a-3p axis contributes to p21WAF1 degradation in oral cancer. , 2020, 16, e1008580.		0
13	Muscle-Specific FXR1 Isoforms in Squamous Cell Cancer. Trends in Cancer, 2019, 5, 82-84.	3.8	9
14	The Long (IncRNA) and Short (miRNA) of It: TGFβ-Mediated Control of RNA-Binding Proteins and Noncoding RNAs. Molecular Cancer Research, 2018, 16, 567-579.	1.5	61
15	Smoking-induced control of miR-133a-3p alters the expression of EGFR and HuR in HPV-infected oropharyngeal cancer. PLoS ONE, 2018, 13, e0205077.	1.1	22
16	A regulated PNUTS mRNA to IncRNA splice switch mediates EMT and tumour progression. Nature Cell Biology, 2017, 19, 1105-1115.	4.6	262
17	Fbxo4-mediated degradation of Fxr1 suppresses tumorigenesis in head and neck squamous cell carcinoma. Nature Communications, 2017, 8, 1534.	5.8	42
18	RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC. PLoS Genetics, 2016, 12, e1006306.	1.5	52

2

#	Article	IF	CITATIONS
19	Lack of <i>p53</i> Augments Antitumor Functions in Cytolytic T Cells. Cancer Research, 2016, 76, 5229-5240.	0.4	34
20	Anti-oxidant capacity and anti-tumor T cell function: A direct correlation. Oncolmmunology, 2015, 4, e985942.	2.1	9
21	RNA-binding protein CELF1 promotes tumor growth and alters gene expression in oral squamous cell carcinoma. Oncotarget, 2015, 6, 43620-43634.	0.8	29
22	Inhibition of Caspases Protects Mice from Radiation-induced Oral Mucositis and Abolishes the Cleavage of RNA-binding Protein HuR. Journal of Biological Chemistry, 2014, 289, 3487-3500.	1.6	17
23	Overexpression of RNA-binding protein CELF1 prevents apoptosis and destabilizes pro-apoptotic mRNAs in oral cancer cells. RNA Biology, 2013, 10, 277-286.	1.5	47
24	Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdisciplinary Reviews RNA, 2012, 3, 286-293.	3.2	149
25	MKP-1 regulates cytokine mRNA stability through selectively modulation subcellular translocation of AUF1. Cytokine, 2011, 56, 245-255.	1.4	48
26	Quantitative Nanostructural and Single-Molecule Force Spectroscopy Biomolecular Analysis of Human-Saliva-Derived Exosomes. Langmuir, 2011, 27, 14394-14400.	1.6	174
27	Caspase-mediated Cleavage of RNA-binding Protein HuR Regulates c-Myc Protein Expression after Hypoxic Stress. Journal of Biological Chemistry, 2011, 286, 32333-32343.	1.6	53
28	Structural-Mechanical Characterization of Nanoparticle Exosomes in Human Saliva, Using Correlative AFM, FESEM, and Force Spectroscopy. ACS Nano, 2010, 4, 1921-1926.	7.3	312
29	Nanostructural and Transcriptomic Analyses of Human Saliva Derived Exosomes. PLoS ONE, 2010, 5, e8577.	1.1	286
30	Transcriptomic Analyses of Saliva. Methods in Molecular Biology, 2010, 666, 43-51.	0.4	22