Guang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6132794/publications.pdf Version: 2024-02-01

CHANC CHEN

#	Article	IF	CITATIONS
1	Treeâ€Inspired Design for Highâ€Efficiency Water Extraction. Advanced Materials, 2017, 29, 1704107.	21.0	494
2	Mesoporous, Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment. ACS Nano, 2017, 11, 4275-4282.	14.6	392
3	Scalable and Highly Efficient Mesoporous Woodâ€Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport. Advanced Functional Materials, 2018, 28, 1707134.	14.9	366
4	Rich Mesostructures Derived from Natural Woods for Solar Steam Generation. Joule, 2017, 1, 588-599.	24.0	363
5	Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Materials, 2019, 18, 608-613.	27.5	343
6	Highâ€Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design. Advanced Energy Materials, 2018, 8, 1701616.	19.5	255
7	Polyelectrolyte brushes: theory, modelling, synthesis and applications. Soft Matter, 2015, 11, 8550-8583.	2.7	131
8	Bioinspired Solarâ€Heated Carbon Absorbent for Efficient Cleanup of Highly Viscous Crude Oil. Advanced Functional Materials, 2019, 29, 1900162.	14.9	116
9	A Highâ€Performance, Lowâ€Tortuosity Woodâ€Carbon Monolith Reactor. Advanced Materials, 2017, 29, 1604257.	21.0	110
10	Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hückel linearization. Journal of Colloid and Interface Science, 2015, 445, 357-363.	9.4	80
11	The Effect of Droplet Sizes on Overspray in Aerosolâ€Jet Printing. Advanced Engineering Materials, 2018, 20, 1701084.	3.5	67
12	High-Performance, Scalable Wood-Based Filtration Device with a Reversed-Tree Design. Chemistry of Materials, 2020, 32, 1887-1895.	6.7	65
13	Flexible, Bio-Compatible Nanofluidic Ion Conductor. Chemistry of Materials, 2018, 30, 7707-7713.	6.7	54
14	Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density. Journal of Applied Physics, 2015, 117, .	2.5	51
15	Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	40
16	Massively Enhanced Electroosmotic Transport in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes. Journal of Physical Chemistry B, 2017, 121, 3130-3141.	2.6	37
17	Electrostatics of soft charged interfaces with pH-dependent charge density: effect of consideration of appropriate hydrogen ion concentration distribution. RSC Advances, 2015, 5, 4493-4501.	3.6	28
18	Efficient electrochemomechanical energy conversion in nanochannels grafted with end-charged polyelectrolyte brushes at medium and high salt concentration. Soft Matter, 2018, 14, 5246-5255.	2.7	27

GUANG CHEN

#	Article	IF	CITATIONS
19	Anomalous Shrinking–Swelling of Nanoconfined End-Charged Polyelectrolyte Brushes: Interplay of Confinement and Electrostatic Effects. Journal of Physical Chemistry B, 2016, 120, 6848-6857.	2.6	21
20	Scaling Laws and Ionic Current Inversion in Polyelectrolyte-Grafted Nanochannels. Journal of Physical Chemistry B, 2015, 119, 12714-12726.	2.6	19
21	Influence of Salt on the Viscosity of Polyelectrolyte Solutions. Physical Review Letters, 2020, 124, 177801.	7.8	14
22	Effect of Gas Flow Rates on Quality of Aerosol Jet Printed Traces With Nanoparticle Conducting Ink. Journal of Electronic Packaging, Transactions of the ASME, 2020, 142, .	1.8	13
23	Electrokinetics in nanochannels grafted with poly-zwitterionic brushes. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	10
24	Electrostatics, conformation, and rheology of unentangled semidilute polyelectrolyte solutions. Journal of Rheology, 2021, 65, 507-526.	2.6	10
25	Wood Ionic Cable. Small, 2021, 17, e2008200.	10.0	10
26	Scaling Relationships for Spherical Polymer Brushes Revisited. Journal of Physical Chemistry B, 2016, 120, 5272-5277.	2.6	8
27	lonic current in nanochannels grafted with pHâ€responsive polyelectrolyte brushes modeled using augmented strong stretching theory. Electrophoresis, 2020, 41, 554-561.	2.4	7
28	Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pHâ€responsive endâ€charged polyelectrolyte brushes. Electrophoresis, 2017, 38, 720-729.	2.4	6
29	Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime. Colloids and Surfaces B: Biointerfaces, 2016, 147, 180-190.	5.0	5