Fumihiko Kitagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6132592/publications.pdf

Version: 2024-02-01

687363 552781 26 652 13 26 citations h-index g-index papers 26 26 26 512 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. Journal of Chromatography A, 2014, 1335, 43-60.	3.7	179
2	Recent progress of online sample preconcentration techniques in microchip electrophoresis. Journal of Separation Science, 2008, 31, 2650-2666.	2.5	67
3	Microchip Electrophoresis of Oligosaccharides Using Large-Volume Sample Stacking with an Electroosmotic Flow Pump in a Single Channel. Analytical Chemistry, 2010, 82, 6504-6511.	6.5	60
4	Highly sensitive oligosaccharide analysis in capillary electrophoresis using large-volume sample stacking with an electroosmotic flow pump. Journal of Chromatography A, 2012, 1232, 52-58.	3.7	48
5	Highly sensitive chiral analysis in capillary electrophoresis with large-volume sample stacking with an electroosmotic flow pump. Journal of Chromatography A, 2012, 1246, 28-34.	3.7	42
6	On-line Sample Preconcentration by Large-volume Sample Stacking with an Electroosmotic Flow Pump (LVSEP) in Microscale Electrophoresis. Analytical Sciences, 2013, 29, 1129-1139.	1.6	35
7	Recent Progress of On-line Sample Preconcentration Techniques in Microchip Electrophoresis. Analytical Sciences, 2012, 28, 85.	1.6	34
8	Electrophoretic analysis of cations using large-volume sample stacking with an electroosmotic flow pump using capillaries coated with neutral and cationic polymers. Journal of Chromatography A, 2012, 1267, 65-73.	3.7	32
9	Toward 10 000â€fold sensitivity improvement of oligosaccharides in capillary electrophoresis using largeâ€volume sample stacking with an electroosmotic flow pump combined with fieldâ€amplified sample injection. Electrophoresis, 2013, 34, 2303-2310.	2.4	28
10	Combination of largeâ€volume sample stacking with an electroosmotic flow pump with fieldâ€amplified sample injection on crossâ€channel chips. Electrophoresis, 2017, 38, 2075-2080.	2.4	28
11	Onâ€line coupling of sample preconcentration by LVSEP with gel electrophoretic separation on Tâ€channel chips. Electrophoresis, 2017, 38, 380-386.	2.4	15
12	Simple and Rapid Immobilization of Coating Polymers on Poly(dimethyl siloxane)-glass Hybrid Microchips by a Vacuum-drying Method. Analytical Sciences, 2015, 31, 1171-1175.	1.6	14
13	Highly Sensitive Analysis in Capillary Electrophoresis Using Large-volume Sample Stacking with an Electroosmotic Flow Pump Combined with Field-amplified Sample Injection. Analytical Sciences, 2019, 35, 889-893.	1.6	14
14	LVSEP Analysis of Cationic Analytes in Non-Aqueous Capillary Electrophoresis. Chromatography, 2019, 40, 79-82.	1.7	12
15	Open-tubular Electrochromatographic Chiral Separation of Amino Acids Using an Organic Nanocrystals Immobilized Capillary. Analytical Sciences, 2013, 29, 107-112.	1.6	10
16	Sensitivity Enhancement by Sweeping <i>via</i> Solid Phase Extraction Using Titania Nanoparticles in Capillary Electrophoretic Analysis of Phosphopeptides. Chromatography, 2017, 38, 39-43.	1.7	6
17	Capillary and Microchip Electrophoresis. Analytical Sciences, 2020, 36, 899-900.	1.6	5
18	LVSEP Analysis of Phosphopeptides in Dynamically PVP-Coated Capillaries and Microchannels. Chromatography, 2022, 43, 37-41.	1.7	5

#	Article	IF	CITATION
19	Sensitivity Enhancement by Sweeping via Borate Complexation in Capillary Electrophoretic Analysis of Glycoproteins. Chromatography, 2014, 35, 125-129.	1.7	4
20	Spontaneous formation of mesoporous silica films using non-surfactant template, and optimization with Doehlert designs, for adsorbent for polycyclic aromatic hydrocarbons. Journal of Sol-Gel Science and Technology, 2013, 65, 230-237.	2.4	3
21	Onâ€line sample preconcentration by polarity switching in floating electrodeâ€integrated microchannel. Electrophoresis, 2019, 40, 2478-2483.	2.4	3
22	Nonaqueous capillary gel electrophoretic analysis of metal nanoclusters in polymeric–DMSO–Li + systems. Electrophoresis, 2020, 41, 1400-1404.	2.4	3
23	Sample Preconcentration Protocols in Microfluidic Electrophoresis. Methods in Molecular Biology, 2019, 1906, 65-78.	0.9	2
24	A thinâ€layer solidâ€phase extraction–liquid film elution technique used for the enrichment of polycyclic aromatic hydrocarbons in water. Journal of Separation Science, 2021, 44, 1989-1997.	2.5	1
25	LVSEP Analysis of Cationic Analytes in Cationic Polymer-Coating Microchannel Prepared by Vacuum-Drying Method. Chromatography, 2021, , .	1.7	1
26	High Performance Separation of Metal Complexes by Non-aqueous Capillary Gel Electrophoresis Using Hydroxypropyl Methylcellulose. Bunseki Kagaku, 2022, 71, 187-190.	0.2	1