Chris D. Jiggins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6132453/publications.pdf

Version: 2024-02-01

198	21,290	71 h-index	129
papers	citations		g-index
251	251	251	14555
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A large deletion at the cortex locus eliminates butterfly wing patterning. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	6
2	Head and Tail Oxidized Terpenoid Esters from Androconia of <i>Heliconius erato</i> Butterflies. Journal of Natural Products, 2022, 85, 1428-1435.	3.0	O
3	Condition dependence in biosynthesized chemical defenses of an aposematic and mimetic <i>Heliconius</i> butterfly. Ecology and Evolution, 2022, 12, .	1.9	1
4	Alternative splicing as a source of phenotypic diversity. Nature Reviews Genetics, 2022, 23, 697-710.	16.3	120
5	Phenotypic plasticity in chemical defence of butterflies allows usage of diverse host plants. Biology Letters, 2021, 17, 20200863.	2.3	12
6	Rampant Genome-Wide Admixture across the <i>Heliconius </i> Radiation. Genome Biology and Evolution, 2021, 13, .	2.5	31
7	Population structure, adaptation and divergence of the meadow spittlebug, <i>Philaenus spumarius</i> (Hemiptera, Aphrophoridae), revealed by genomic and morphological data. PeerJ, 2021, 9, e11425.	2.0	9
8	Haplotype tagging reveals parallel formation of hybrid races in two butterfly species. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	46
9	Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic <i>Heliconius</i> butterfly. PeerJ, 2021, 9, e11523.	2.0	7
10	Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. ELife, 2021, 10, .	6.0	40
11	Genomics of altitudeâ€associated wing shape in two tropical butterflies. Molecular Ecology, 2021, 30, 6387-6402.	3.9	8
12	Insights into invasive species from wholeâ€genome resequencing. Molecular Ecology, 2021, 30, 6289-6308.	3.9	56
13	Identification and Composition of Clasper Scent Gland Components of the Butterfly <i>Heliconius erato</i> and Its Relation to Mimicry. ChemBioChem, 2021, 22, 3300-3313.	2.6	10
14	Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nature Communications, 2021, 12, 5717.	12.8	33
15	A novel terpene synthase controls differences in anti-aphrodisiac pheromone production between closely related Heliconius butterflies. PLoS Biology, 2021, 19, e3001022.	5.6	29
16	Clustering of loci controlling species differences in male chemical bouquets of sympatric <i>Heliconius</i> butterflies. Ecology and Evolution, 2021, 11, 89-107.	1.9	9
17	Functional genomics of supergene-controlled behavior in the white-throated sparrow. Faculty Reviews, 2021, 10, 75.	3.9	O
18	The dynamics of cyanide defences in the life cycle of an aposematic butterfly: Biosynthesis versus sequestration. Insect Biochemistry and Molecular Biology, 2020, 116, 103259.	2.7	17

#	Article	IF	Citations
19	A major locus controls a biologically active pheromone component in <i>Heliconius melpomene</i> Evolution; International Journal of Organic Evolution, 2020, 74, 349-364.	2.3	19
20	Deep Convergence, Shared Ancestry, and Evolutionary Novelty in the Genetic Architecture of <i>Heliconius</i> Mimicry. Genetics, 2020, 216, 765-780.	2.9	13
21	Plasticity in flower size as an adaptation to variation in pollinator specificity. Ecological Entomology, 2020, 45, 1367-1372.	2.2	2
22	Visual mate preference evolution during butterfly speciation is linked to neural processing genes. Nature Communications, 2020, 11, 4763.	12.8	24
23	A haplotype-resolved, <i>de novo</i> genome assembly for the wood tiger moth (<i>Arctia) Tj ETQq1 1 0.784314</i>	rgBT /Ove	erlock 10 Tf 5
24	Microclimate buffering and thermal tolerance across elevations in a tropical butterfly. Journal of Experimental Biology, 2020, 223, .	1.7	41
25	The genomics of coloration provides insights into adaptive evolution. Nature Reviews Genetics, 2020, 21, 461-475.	16.3	88
26	Chemical signals act as the main reproductive barrier between sister and mimetic <i>Heliconius</i> butterflies. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200587.	2.6	33
27	How do predators generalize warning signals in simple and complex prey communities? Insights from a videogame. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200014.	2.6	6
28	Divergence of chemosensing during the early stages of speciation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16438-16447.	7.1	25
29	Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation. PLoS Biology, 2020, 18, e3000597.	5.6	60
30	Whole-chromosome hitchhiking driven by a male-killing endosymbiont. PLoS Biology, 2020, 18, e3000610.	5.6	44
31	Adaptive Introgression across Semipermeable Species Boundaries between Local Helicoverpa zea and Invasive Helicoverpa armigera Moths. Molecular Biology and Evolution, 2020, 37, 2568-2583.	8.9	64
32	Species specificity and intraspecific variation in the chemical profiles of <i>Heliconius</i> butterflies across a large geographic range. Ecology and Evolution, 2020, 10, 3895-3918.	1.9	31
33	Hybridization and transgressive exploration of colour pattern and wing morphology in <i>Heliconius</i> butterflies. Journal of Evolutionary Biology, 2020, 33, 942-956.	1.7	12
34	Peace in Colombia is a critical moment for Neotropical connectivity and conservation: Save the northern Andes–Amazon biodiversity bridge. Conservation Letters, 2019, 12, e12594.	5.7	46
35	Conservation and flexibility in the gene regulatory landscape of heliconiine butterfly wings. EvoDevo, 2019, 10, 15.	3.2	22
36	Genomic architecture and introgression shape a butterfly radiation. Science, 2019, 366, 594-599.	12.6	365

#	Article	IF	CITATIONS
37	Altitude and lifeâ€history shape the evolution of <i>Heliconius</i> wings. Evolution; International Journal of Organic Evolution, 2019, 73, 2436-2450.	2.3	27
38	Can genomics shed light on the origin of species?. PLoS Biology, 2019, 17, e3000394.	5.6	9
39	Genetic dissection of assortative mating behavior. PLoS Biology, 2019, 17, e2005902.	5.6	79
40	Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biology, 2019, 17, e2006288.	5.6	253
41	Interplay between Developmental Flexibility and Determinism in the Evolution of Mimetic Heliconius Wing Patterns. Current Biology, 2019, 29, 3996-4009.e4.	3.9	55
42	Male pheromone composition depends on larval but not adult diet in <i>Heliconius melpomene</i> Ecological Entomology, 2019, 44, 397-405.	2.2	35
43	Sexually dimorphic gene expression and transcriptome evolution provide mixed evidence for a fastâ€ Z effect in <i>Heliconius</i>). Journal of Evolutionary Biology, 2019, 32, 194-204.	1.7	31
44	Suppression of <i>Wolbachia </i> -mediated male-killing in the butterfly <i>Hypolimnas bolina </i> involves a single genomic region. Peerl, 2019, 7, e7677.	2.0	13
45	Patterns of Z chromosome divergence among <i>Heliconius</i> species highlight the importance of historical demography. Molecular Ecology, 2018, 27, 3852-3872.	3.9	69
46	patternize: An R package for quantifying colour pattern variation. Methods in Ecology and Evolution, 2018, 9, 390-398.	5.2	96
47	The appearance of mimetic <i>Heliconius </i> butterflies to predators and conspecifics. Evolution; International Journal of Organic Evolution, 2018, 72, 2156-2166.	2.3	33
48	Complex modular architecture around a simple toolkit of wing pattern genes. Nature Ecology and Evolution, 2017, 1, 52.	7.8	179
49	North Andean origin and diversification of the largest ithomiine butterfly genus. Scientific Reports, 2017, 7, 45966.	3.3	48
50	What shapes the continuum of reproductive isolation? Lessons from <i>Heliconius </i> butterflies. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170335.	2.6	54
51	Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170744.	2.6	60
52	A new subspecies in a Heliconius butterfly adaptive radiation (Lepidoptera: Nymphalidae). Zoological Journal of the Linnean Society, 2017, 180, 805-818.	2.3	11
53	The comparative landscape of duplications in Heliconius melpomene and Heliconius cydno. Heredity, 2017, 118, 78-87.	2.6	15
54	Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150485.	4.0	67

#	Article	IF	Citations
55	What Can We Learn About Adaptation from the Wing Pattern Genetics of Heliconius Butterflies?. , 2017, , 173-188.		2
56	Interpreting the genomic landscape of introgression. Current Opinion in Genetics and Development, 2017, 47, 69-74.	3.3	186
57	Macroevolutionary shifts of <i>WntA</i> function potentiate butterfly wing-pattern diversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10701-10706.	7.1	137
58	No evidence for maintenance of a sympatric <i>Heliconius </i> species barrier by chromosomal inversions. Evolution Letters, 2017, 1, 138-154.	3.3	90
59	The biology of color. Science, 2017, 357, .	12.6	509
60	Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies. Molecular Ecology, 2017, 26, 5160-5172.	3.9	70
61	Glittering gold and the quest for Isla de Muerta. Journal of Evolutionary Biology, 2017, 30, 1509-1511.	1.7	19
62	The Scent Chemistry of Heliconius Wing Androconia. Journal of Chemical Ecology, 2017, 43, 843-857.	1.8	36
63	Estimating the age of <i>Heliconius </i> butterflies from calibrated photographs. PeerJ, 2017, 5, e3821.	2.0	4
64	Male sex pheromone components in <i> Heliconius</i> butterflies released by the androconia affect female choice. PeerJ, 2017, 5, e3953.	2.0	79
65	Butterfly Learning and the Diversification of Plant Leaf Shape. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	29
66	Assessing genotype-phenotype associations in three dorsal colour morphs in the meadow spittlebug Philaenus spumarius (L.) (Hemiptera: Aphrophoridae) using genomic and transcriptomic resources. BMC Genetics, 2016, 17, 144.	2.7	14
67	Natural Selection and Genetic Diversity in the Butterfly <i>Heliconius melpomene</i> . Genetics, 2016, 203, 525-541.	2.9	94
68	Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Molecular Ecology, 2016, 25, 5765-5784.	3.9	52
69	Avoidance of an aposematically coloured butterfly by wild birds in a tropical forest. Ecological Entomology, 2016, 41, 627-632.	2.2	34
70	The transcriptome response of <i>Heliconius melpomene</i> larvae to a novel host plant. Molecular Ecology, 2016, 25, 4850-4865.	3.9	39
71	The gene cortex controls mimicry and crypsis in butterflies and moths. Nature, 2016, 534, 106-110.	27.8	212
72	Genome-wide analysis of ionotropic receptors provides insight into their evolution in Heliconius butterflies. BMC Genomics, 2016, 17, 254.	2.8	38

#	Article	IF	Citations
73	Major Improvements to the <i>Heliconius melpomene</i> Genome Assembly Used to Confirm 10 Chromosome Fusion Events in 6ÂMillion Years of Butterfly Evolution. G3: Genes, Genomes, Genetics, 2016, 6, 695-708.	1.8	149
74	A flamboyant behavioral polymorphism is controlled by a lethal supergene. Nature Genetics, 2016, 48, 7-8.	21.4	4
75	Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling. PLoS Biology, 2016, 14, e1002353.	5.6	136
76	An introgressed wing pattern acts as a mating cue. Evolution; International Journal of Organic Evolution, 2015, 69, 1619-1629.	2.3	25
77	Estimation of the Spontaneous Mutation Rate in Heliconius melpomene. Molecular Biology and Evolution, 2015, 32, 239-243.	8.9	220
78	Sex Chromosome Dosage Compensation in <i>Heliconius</i> Butterflies: Global yet Still Incomplete?. Genome Biology and Evolution, 2015, 7, 2545-2559.	2.5	54
79	Pollen feeding proteomics: Salivary proteins of the passion flower butterfly, Heliconius melpomene. Insect Biochemistry and Molecular Biology, 2015, 63, 7-13.	2.7	24
80	Multilocus Species Trees Show the Recent Adaptive Radiation of the Mimetic Heliconius Butterflies. Systematic Biology, 2015, 64, 505-524.	5.6	204
81	Evaluating the Use of ABBA–BABA Statistics to Locate Introgressed Loci. Molecular Biology and Evolution, 2015, 32, 244-257.	8.9	532
82	The diversification of <i>Heliconius</i> butterflies: what have we learned in 150 years?. Journal of Evolutionary Biology, 2015, 28, 1417-1438.	1.7	144
83	Towards the identification of the loci of adaptive evolution. Methods in Ecology and Evolution, 2015, 6, 445-464.	5.2	115
84	The Evolution of Sex Ratio Distorter Suppression Affects a 25 cM Genomic Region in the Butterfly Hypolimnas bolina. PLoS Genetics, 2014, 10, e1004822.	3.5	27
85	Standing and flowing: the complex origins of adaptive variation. Molecular Ecology, 2014, 23, 3935-3937.	3.9	39
86	Neighboring genes shaping a single adaptive mimetic trait. Evolution & Development, 2014, 16, 3-12.	2.0	8
87	The evolutionary genetics of highly divergent alleles of the mimicry locus in Papilio dardanus. BMC Evolutionary Biology, 2014, 14, 140.	3.2	12
88	Genomics and the origin of species. Nature Reviews Genetics, 2014, 15, 176-192.	16.3	850
89	Supergenes and their role in evolution. Heredity, 2014, 113, 1-8.	2.6	274
90	Population genomics of parallel hybrid zones in the mimetic butterflies, <i>H. melpomene</i> and <i>H. erato</i> . Genome Research, 2014, 24, 1316-1333.	5.5	114

#	Article	IF	Citations
91	Comparative genomics of the mimicry switch in <i>Papilio dardanus</i> . Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140465.	2.6	40
92	Radiating genomes. Nature, 2014, 513, 318-319.	27.8	3
93	Mutualistic Mimicry and Filtering by Altitude Shape the Structure of Andean Butterfly Communities. American Naturalist, 2014, 183, 26-39.	2.1	52
94	A gut feeling for isolation. Nature, 2013, 500, 412-413.	27.8	0
95	Genome-wide evidence for speciation with gene flow in <i>Heliconius</i> butterflies. Genome Research, 2013, 23, 1817-1828.	5.5	609
96	Hybridization and speciation. Journal of Evolutionary Biology, 2013, 26, 229-246.	1.7	1,735
97	Genomeâ€wide patterns of divergence and gene flow across a butterfly radiation. Molecular Ecology, 2013, 22, 814-826.	3.9	160
98	An impedance-based integrated biosensor for suspended DNA characterization. Scientific Reports, 2013, 3, 2730.	3.3	46
99	Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies. PLoS Genetics, 2013, 9, e1003620.	3.5	154
100	Ecological and genetic factors influencing the transition between hostâ€use strategies in sympatric <scp><i>Heliconius</i></scp> butterflies. Journal of Evolutionary Biology, 2013, 26, 1959-1967.	1.7	46
101	Disruptive ecological selection on a mating cue. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4907-4913.	2.6	143
102	Evolution of a mimicry supergene from a multilocus architecture. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 316-325.	2.6	33
103	Diversification of complex butterfly wing patterns by repeated regulatory evolution of a <i>Wnt</i> ligand. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12632-12637.	7.1	244
104	Adaptive Introgression across Species Boundaries in Heliconius Butterflies. PLoS Genetics, 2012, 8, e1002752.	3.5	319
105	Genomic islands of divergence in hybridizing <i>Heliconius</i> butterflies identified by large-scale targeted sequencing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 343-353.	4.0	294
106	Partial Complementarity of the Mimetic Yellow Bar Phenotype in Heliconius Butterflies. PLoS ONE, 2012, 7, e48627.	2.5	7
107	Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature, 2012, 487, 94-98.	27.8	1,086
108	Evaluating female remating rates in light of spermatophore degradation in ⟨i⟩Heliconius⟨/i⟩ butterflies: pupalâ€mating monandry versus adultâ€mating polyandry. Ecological Entomology, 2012, 37, 257-268.	2.2	37

#	Article	IF	Citations
109	Ecologically relevant cryptic species in the highly polymorphic Amazonian butterfly Mechanitis mazaeus s.l. (Lepidoptera: Nymphalidae; Ithomiini). Biological Journal of the Linnean Society, 2012, 106, 540-560.	1.6	17
110	<i>optix</i> Drives the Repeated Convergent Evolution of Butterfly Wing Pattern Mimicry. Science, 2011, 333, 1137-1141.	12.6	431
111	Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature, 2011, 477, 203-206.	27.8	509
112	Parallel Evolution of <i>Bacillus thuringiensis</i> Toxin Resistance in Lepidoptera. Genetics, 2011, 189, 675-679.	2.9	239
113	Wing patterning gene redefines the mimetic history of <i>Heliconius</i> butterflies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19666-19671.	7.1	104
114	MATE PREFERENCE ACROSS THE SPECIATION CONTINUUM IN A CLADE OF MIMETIC BUTTERFLIES. Evolution; International Journal of Organic Evolution, 2011, 65, 1489-1500.	2.3	101
115	Comparative population genetics of a mimicry locus among hybridizing Heliconius butterfly species. Heredity, 2011, 107, 200-204.	2.6	13
116	Deep mitochondrial divergence within a Heliconius butterfly species is not explained by cryptic speciation or endosymbiotic bacteria. BMC Evolutionary Biology, 2011, 11, 358.	3.2	23
117	Convergent, modular expression of ebony and tan in the mimetic wing patterns of Heliconius butterflies. Development Genes and Evolution, 2011, 221, 297-308.	0.9	36
118	Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene. BMC Genomics, 2011, 12, 62.	2.8	44
119	Pervasive genetic associations between traits causing reproductive isolation in <i>>Heliconius</i> >butterflies. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 511-518.	2.6	106
120	Evolution of the Insect Yellow Gene Family. Molecular Biology and Evolution, 2011, 28, 257-272.	8.9	114
121	Linkage Mapping and Comparative Genomics Using Next-Generation RAD Sequencing of a Non-Model Organism. PLoS ONE, 2011, 6, e19315.	2.5	270
122	A Peppered Icon Enters the Genomic Era. BioScience, 2011, 61, 655-656.	4.9	2
123	A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends in Genetics, 2010, 26, 484-492.	6.7	127
124	Signatures of selection in loci governing major colour patterns in Heliconius butterflies and related species. BMC Evolutionary Biology, 2010, 10, 368.	3.2	5
125	Characterization of a hotspot for mimicry: assembly of a butterfly wing transcriptome to genomic sequence at the <i>HmYb/Sb</i> locus. Molecular Ecology, 2010, 19, 240-254.	3.9	70
126	Variable extent of sex-biased dispersal in a strongly polygynous mammal. Molecular Ecology, 2010, 19, 3101-3113.	3.9	32

#	Article	IF	Citations
127	Multiple sources of reproductive isolation in a bimodal butterfly hybrid zone. Journal of Evolutionary Biology, 2010, 23, 1312-1320.	1.7	45
128	Mis-Spliced Transcripts of Nicotinic Acetylcholine Receptor $\hat{l}\pm 6$ Are Associated with Field Evolved Spinosad Resistance in Plutella xylostella (L.). PLoS Genetics, 2010, 6, e1000802.	3.5	110
129	Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in Heliconius erato. PLoS Genetics, 2010, 6, e1000796.	3.5	99
130	Genomic Hotspots for Adaptation: The Population Genetics of MÃ $\frac{1}{4}$ llerian Mimicry in the Heliconius melpomene Clade. PLoS Genetics, 2010, 6, e1000794.	3.5	97
131	Genetic Evidence for Hybrid Trait Speciation in Heliconius Butterflies. PLoS Genetics, 2010, 6, e1000930.	3.5	90
132	Phylogenetic community ecology needs to take positive interactions into account. Communicative and Integrative Biology, 2009, 2, 113-116.	1.4	11
133	Mýllerian Mimicry: Sharing the Load Reduces the Legwork. Current Biology, 2009, 19, R687-R689.	3.9	11
134	Rapidly Shifting Sex Ratio across a Species Range. Current Biology, 2009, 19, 1628-1631.	3.9	34
135	Out of the Andes: patterns of diversification in clearwing butterflies. Molecular Ecology, 2009, 18, 1716-1729.	3.9	140
136	Butterfly speciation and the distribution of gene effect sizes fixed during adaptation. Heredity, 2009, 102, 57-65.	2.6	46
137	Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations: a mitochondrial survey. Heredity, 2009, 102, 199-210.	2.6	36
138	ASSORTATIVE MATING PREFERENCES AMONG HYBRIDS OFFERS A ROUTE TO HYBRID SPECIATION. Evolution; International Journal of Organic Evolution, 2009, 63, 1660-1665.	2.3	96
139	Shared and divergent expression domains on mimetic <i>Heliconius</i> Wings. Evolution & Development, 2009, 11, 498-512.	2.0	43
140	Interspecific sexual attraction because of convergence in warning colouration: is there a conflict between natural and sexual selection in mimetic species?. Journal of Evolutionary Biology, 2008, 21, 749-760.	1.7	84
141	Landscape features affect gene flow of Scottish Highland red deer (<i>Cervus elaphus</i>). Molecular Ecology, 2008, 17, 981-996.	3.9	182
142	A hybrid zone provides evidence for incipient ecological speciation in <i>Heliconius</i> butterflies. Molecular Ecology, 2008, 17, 4699-4712.	3.9	57
143	Gene flow and the genealogical history of Heliconius heurippa. BMC Evolutionary Biology, 2008, 8, 132.	3.2	30
144	Two sisters in the same dress: Heliconius cryptic species. BMC Evolutionary Biology, 2008, 8, 324.	3.2	54

#	Article	IF	Citations
145	Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies. BMC Genomics, 2008, 9, 345.	2.8	51
146	Ecological Speciation in Mimetic Butterflies. BioScience, 2008, 58, 541-548.	4.9	119
147	Convergent Evolution in the Genetic Basis of Mul`llerian Mimicry in Heliconius Butterflies. Genetics, 2008, 180, 1567-1577.	2.9	79
148	Mutualistic Interactions Drive Ecological Niche Convergence in a Diverse Butterfly Community. PLoS Biology, 2008, 6, e300.	5.6	130
149	Hybrid trait speciation and <i>Heliconius </i> butterflies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3047-3054.	4.0	108
150	Colour pattern specification in the Mocker swallowtail Papilio dardanus: the transcription factor invected is a candidate for the mimicry locus H. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1181-1188.	2.6	35
151	ButterflyBase: a platform for lepidopteran genomics. Nucleic Acids Research, 2007, 36, D582-D587.	14.5	90
152	Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2881-2889.	2.6	233
153	Synteny and Chromosome Evolution in the Lepidoptera: Evidence From Mapping in <i>Heliconius melpomene</i> . Genetics, 2007, 177, 417-426.	2.9	101
154	Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biological Journal of the Linnean Society, 2007, 92, 221-239.	1.6	138
155	A Conserved Supergene Locus Controls Colour Pattern Diversity in Heliconius Butterflies. PLoS Biology, 2006, 4, e303.	5.6	242
156	Polyphyly and gene flow between non-sibling Heliconius species. BMC Biology, 2006, 4, 11.	3.8	113
157	THE PHYLOGENETIC PATTERN OF SPECIATION AND WING PATTERN CHANGE IN NEOTROPICALITHOMIABUTTERFLIES (LEPIDOPTERA: NYMPHALIDAE). Evolution; International Journal of Organic Evolution, 2006, 60, 1454-1466.	2.3	64
158	Speciation by hybridization in Heliconius butterflies. Nature, 2006, 441, 868-871.	27.8	412
159	Speciation: Reinforced butterfly speciation. Heredity, 2006, 96, 107-108.	2.6	5
160	Heliconius wing patterns: an evo-devo model for understanding phenotypic diversity. Heredity, 2006, 97, 157-167.	2.6	100
161	Sympatric Speciation: Why the Controversy?. Current Biology, 2006, 16, R333-R334.	3.9	39
162	THE PHYLOGENETIC PATTERN OF SPECIATION AND WING PATTERN CHANGE IN NEOTROPICAL ITHOMIA BUTTERFLIES (LEPIDOPTERA: NYMPHALIDAE). Evolution; International Journal of Organic Evolution, 2006, 60, 1454.	2.3	17

#	Article	IF	CITATIONS
163	Molecular systematics of the butterfly genus Ithomia (Lepidoptera: Ithomiinae): a composite phylogenetic hypothesis based on seven genes. Molecular Phylogenetics and Evolution, 2005, 34, 625-644.	2.7	54
164	Genomic tools and cDNA derived markers for butterflies. Molecular Ecology, 2005, 14, 2883-2897.	3.9	37
165	First-generation linkage map of the warningly colored butterfly Heliconius erato. Heredity, 2005, 94, 408-417.	2.6	58
166	A Narrow <i>Heliconius cydno</i> (Nymphalidae; Heliconiini) Hybrid Zone With Differences in Morph Sex Ratios ¹ . Biotropica, 2005, 37, 119-128.	1.6	6
167	A Genetic Linkage Map of the Mimetic Butterfly Heliconius melpomene. Genetics, 2005, 171, 557-570.	2.9	111
168	ECOLOGY: A Checkered History. Science, 2004, 305, 1913-1913.	12.6	1
169	Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. Journal of Evolutionary Biology, 2004, 17, 680-691.	1.7	119
170	Hybrid incompatibility is consistent with a hybrid origin of Heliconius heurippa Hewitson from its close relatives, Heliconius cydno Doubleday and Heliconius melpomene Linnaeus. Journal of Evolutionary Biology, 2004, 18, 247-256.	1.7	39
171	Speciation in the apple maggot fly: a blend of vintages?. Trends in Ecology and Evolution, 2004, 19, 111-114.	8.7	28
172	Mimicry: developmental genes that contribute to speciation. Evolution & Development, 2003, 5, 269-280.	2.0	112
173	Polarized light as a butterfly mating signal. Nature, 2003, 423, 31-32.	27.8	235
174	Patterns of pollen feeding and habitat preference among Heliconius species. Ecological Entomology, 2002, 27, 448-456.	2.2	97
175	Phylogenetic Discordance at the Species Boundary: Comparative Gene Genealogies Among Rapidly Radiating Heliconius Butterflies. Molecular Biology and Evolution, 2002, 19, 2176-2190.	8.9	156
176	Hybrid Sterility, Haldane's Rule and Speciation in <i>Heliconius cydno</i> and <i>H. melpomene</i> Genetics, 2002, 161, 1517-1526.	2.9	111
177	SEX-LINKED HYBRID STERILITY IN A BUTTERFLY. Evolution; International Journal of Organic Evolution, 2001, 55, 1631-1638.	2.3	98
178	Reproductive isolation caused by colour pattern mimicry. Nature, 2001, 411, 302-305.	27.8	611
179	SEX-LINKED HYBRID STERILITY IN A BUTTERFLY. Evolution; International Journal of Organic Evolution, 2001, 55, 1631.	2.3	13
180	Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1849-1854.	2.6	189

#	Article	IF	Citations
181	The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology, 2000, 120, 439-446.	1.5	162
182	Adaptive dynamics: is speciation too easy?. Trends in Ecology and Evolution, 2000, 15, 225-226.	8.7	16
183	Bimodal hybrid zones and speciation. Trends in Ecology and Evolution, 2000, 15, 250-255.	8.7	538
184	Reply from J.R. Bridle, C.D. Jiggins and T. Tregenza. Trends in Ecology and Evolution, 2000, 15, 420.	8.7	2
185	Reply from C.D. Jiggins and J. Mallet. Trends in Ecology and Evolution, 2000, 15, 469.	8.7	1
186	Behavioral and Physiological Differences between Two Parapatric Heliconius Species 1. Biotropica, 1999, 31, 661-668.	1.6	17
187	Conserved Ecological Niches. Science, 1999, 286, 239-239.	12.6	0
188	Genetic evidence for a sibling species of Heliconius charithonia (Lepidoptera; Nymphalidae). Biological Journal of the Linnean Society, 1998, 64, 57-67.	1.6	17
189	ESTIMATING THE MATING BEHAVIOR OF A PAIR OF HYBRIDIZING <i>HELICONIUS</i> SPECIES IN THE WILD. Evolution; International Journal of Organic Evolution, 1998, 52, 503-510.	2.3	32
190	Estimating the Mating Behavior of a Pair of Hybridizing Heliconius Species in the Wild. Evolution; International Journal of Organic Evolution, 1998, 52, 503.	2.3	21
191	Host plant adaptation has not played a role in the recent speciation of Heliconius himera and Heliconius erato. Ecological Entomology, 1997, 22, 361-365.	2.2	25
192	What initiates speciation in passion-vine butterflies?. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8628-8633.	7.1	150
193	The genetic basis of an adaptive radiation: warning colour in two Heliconius species. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1167-1175.	2.6	78
194	The maintenance of species differences across a Heliconius hybrid zone. Heredity, 1997, 79, 495-505.	2.6	87
195	The maintenance of species differences across a Heliconius hybrid zone. Heredity, 1997, 79, 495-505.	2.6	13
196	Evolution: Mimicry meets the mitochondrion. Current Biology, 1996, 6, 937-940.	3.9	35
197	What can hybrid zones tell us about speciation? The case of <i>Heliconius erato </i> and <i>H. himera </i> (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 1996, 59, 221-242.	1.6	76
198	Strange reproductive modes and population genetics. Peer Community in Evolutionary Biology, $0,$	0.0	0