
Paul P Gardner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustained software development, not number of citations or journal choice, is indicative of accurate bioinformatic software. Genome Biology, 2022, 23, 56.	8.8	8
2	TISIGNER.com: web services for improving recombinant protein production. Nucleic Acids Research, 2021, 49, W654-W661.	14.5	15
3	Evolution of virulence in a novel family of transmissible megaâ€plasmids. Environmental Microbiology, 2021, 23, 5289-5304.	3.8	5
4	On the optimistic performance evaluation of newly introduced bioinformatic methods. Genome Biology, 2021, 22, 152.	8.8	20
5	SorTn-seq: a high-throughput functional genomics approach to discovering regulators of bacterial gene expression. Nature Protocols, 2021, 16, 4382-4418.	12.0	7
6	The Rcs stress response inversely controls surface and CRISPR–Cas adaptive immunity to discriminate plasmids and phages. Nature Microbiology, 2021, 6, 162-172.	13.3	32
7	Analysis of 11,430 recombinant protein production experiments reveals that protein yield is tunable by synonymous codon changes of translation initiation sites. PLoS Computational Biology, 2021, 17, e1009461.	3.2	9
8	A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nature Microbiology, 2020, 5, 48-55.	13.3	123
9	The tuatara genome reveals ancient features of amniote evolution. Nature, 2020, 584, 403-409.	27.8	105
10	Solubility-Weighted Index: fast and accurate prediction of protein solubility. Bioinformatics, 2020, 36, 4691-4698.	4.1	40
11	ncVarDB: a manually curated database for pathogenic non-coding variants and benign controls. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	8
12	Essential guidelines for computational method benchmarking. Genome Biology, 2019, 20, 125.	8.8	114
13	Transcriptional noise and exaptation as sources for bacterial sRNAs. Biochemical Society Transactions, 2019, 47, 527-539.	3.4	38
14	Convergent regulatory evolution and loss of flight in paleognathous birds. Science, 2019, 364, 74-78.	12.6	189
15	Genomic correlates of extraintestinal infection are linked with changes in cell morphology in Campylobacter jejuni. Microbial Genomics, 2019, 5, .	2.0	6
16	Identifying accurate metagenome and amplicon software via a meta-analysis of sequence to taxonomy benchmarking studies. PeerJ, 2019, 7, e6160.	2.0	34
17	Towards robust and repeatable sampling methods in <scp>eDNA</scp> â€based studies. Molecular Ecology Resources, 2018, 18, 940-952.	4.8	137
18	An Evaluation of Function of Multicopy Noncoding RNAs in Mammals Using ENCODE/FANTOM Data and Comparative Genomics. Molecular Biology and Evolution, 2018, 35, 1451-1462.	8.9	5

PAUL P GARDNER

#	Article	IF	CITATIONS
19	Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica. PLoS Genetics, 2018, 14, e1007333.	3.5	73
20	A comprehensive benchmark of RNA–RNA interaction prediction tools for all domains of life. Bioinformatics, 2017, 33, 988-996.	4.1	54
21	Why so narrow: Distribution of anti-sense regulated, type I toxin-antitoxin systems compared with type II and type III systems. RNA Biology, 2017, 14, 275-280.	3.1	27
22	Genomic, Transcriptomic, and Phenotypic Analyses of Neisseria meningitidis Isolates from Disease Patients and Their Household Contacts. MSystems, 2017, 2, .	3.8	3
23	Complete Genome Sequences of Two Geographically Distinct Legionella micdadei Clinical Isolates. Genome Announcements, 2017, 5, .	0.8	0
24	Analysis of the genome of the New Zealand giant collembolan (Holacanthella duospinosa) sheds light on hexapod evolution. BMC Genomics, 2017, 18, 795.	2.8	28
25	Transposon insertion libraries for the characterization of mutants from the kiwifruit pathogen Pseudomonas syringae pv. actinidiae. PLoS ONE, 2017, 12, e0172790.	2.5	26
26	A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes. Bioinformatics, 2016, 32, 3566-3574.	4.1	25
27	Studying RNA Homology and Conservation with Infernal: From Single Sequences to RNA Families. Current Protocols in Bioinformatics, 2016, 54, 12.13.1-12.13.25.	25.8	21
28	An evaluation of the accuracy and speed of metagenome analysis tools. Scientific Reports, 2016, 6, 19233.	3.3	278
29	Avoidance of stochastic RNA interactions can be harnessed to control protein expression levels in bacteria and archaea. ELife, 2016, 5, .	6.0	25
30	Conservation and Losses of Non-Coding RNAs in Avian Genomes. PLoS ONE, 2015, 10, e0121797.	2.5	18
31	Annotating RNA motifs in sequences and alignments. Nucleic Acids Research, 2015, 43, 691-698.	14.5	21
32	Third Report on Chicken Genes and Chromosomes 2015. Cytogenetic and Genome Research, 2015, 145, 78-179.	1.1	97
33	Rfam 12.0: updates to the RNA families database. Nucleic Acids Research, 2015, 43, D130-D137.	14.5	1,000
34	Crowdsourcing RNA structural alignments with an online computer game. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2015, , 330-41.	0.7	5
35	Molecular characterization of a new member of the lariat capping twin-ribozyme introns. Mobile DNA, 2014, 5, 25.	3.6	14
36	Robust Identification of Noncoding RNA from Transcriptomes Requires Phylogenetically-Informed Sampling. PLoS Computational Biology, 2014, 10, e1003907.	3.2	49

Paul P Gardner

#	Article	IF	CITATIONS
37	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	12.6	895
38	An Introduction to RNA Databases. Methods in Molecular Biology, 2014, 1097, 107-123.	0.9	7
39	CROWDSOURCING RNA STRUCTURAL ALIGNMENTS WITH AN ONLINE COMPUTER GAME. , 2014, , .		5
40	Letter from the Editor. RNA Biology, 2013, 10, 1-1.	3.1	47
41	Genome and Transcriptome Adaptation Accompanying Emergence of the Definitive Type 2 Host-Restricted Salmonella enterica Serovar Typhimurium Pathovar. MBio, 2013, 4, e00565-13.	4.1	57
42	Rfam 11.0: 10 years of RNA families. Nucleic Acids Research, 2013, 41, D226-D232.	14.5	745
43	A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Research, 2013, 41, 4549-4564.	14.5	108
44	Comparative Analysis of RNA Families Reveals Distinct Repertoires for Each Domain of Life. PLoS Computational Biology, 2012, 8, e1002752.	3.2	50
45	A VapBC Toxin-Antitoxin Module Is a Posttranscriptional Regulator of Metabolic Flux in Mycobacteria. Journal of Bacteriology, 2012, 194, 2189-2204.	2.2	75
46	Making your database available through Wikipedia: the pros and cons. Nucleic Acids Research, 2012, 40, D9-D12.	14.5	31
47	RNASTAR: An RNA STructural Alignment Repository that provides insight into the evolution of natural and artificial RNAs. Rna, 2012, 18, 1319-1327.	3.5	30
48	Three years of RNA Families. RNA Biology, 2012, 9, 2-3.	3.1	3
49	RNIE: genome-wide prediction of bacterial intrinsic terminators. Nucleic Acids Research, 2011, 39, 5845-5852.	14.5	71
50	Rfam: Wikipedia, clans and the "decimal" release. Nucleic Acids Research, 2011, 39, D141-D145.	14.5	355
51	RNAcentral: A vision for an international database of RNA sequences. Rna, 2011, 17, 1941-1946.	3.5	67
52	Two covariance models for iron-responsive elements. RNA Biology, 2011, 8, 792-801.	3.1	11
53	Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome. Microbiology (United) Tj ETQq1 1 0.	784314 rgE 1.8	BT /Qyerlock
54	SnoPatrol: how many snoRNA genes are there?. Journal of Biology, 2010, 9, 4.	2.7	37

PAUL P GARDNER

#	Article	IF	CITATIONS
55	Ten Simple Rules for Editing Wikipedia. PLoS Computational Biology, 2010, 6, e1000941.	3.2	36
56	Long- and Short-Term Selective Forces on Malaria Parasite Genomes. PLoS Genetics, 2010, 6, e1001099.	3.5	30
57	The use of covariance models to annotate RNAs in whole genomes. Briefings in Functional Genomics & Proteomics, 2009, 8, 444-450.	3.8	17
58	A home for RNA families at <i>RNA Biology</i> . RNA Biology, 2009, 6, 2-4.	3.1	8
59	Rfam: updates to the RNA families database. Nucleic Acids Research, 2009, 37, D136-D140.	14.5	820
60	A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi. PLoS Genetics, 2009, 5, e1000569.	3.5	202
61	Mutation of miRNA target sequences during human evolution. Trends in Genetics, 2008, 24, 262-265.	6.7	23
62	Genome-wide discovery and verification of novel structured RNAs in <i>Plasmodium falciparum</i> . Genome Research, 2008, 18, 281-292.	5.5	81
63	The RNA WikiProject: Community annotation of RNA families. Rna, 2008, 14, 2462-2464.	3.5	66
64	MASTR: multiple alignment and structure prediction of non-coding RNAs using simulated annealing. Bioinformatics, 2007, 23, 3304-3311.	4.1	67
65	Multiple alignment and structure prediction of non-coding RNA sequences. BMC Bioinformatics, 2007, 8, .	2.6	2
66	Use of tiling array data and RNA secondary structure predictions to identify noncoding RNA genes. BMC Genomics, 2007, 8, 244.	2.8	12
67	Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Research, 2006, 34, e107-e107.	14.5	112
68	A hidden Markov model approach for determining expression from genomic tiling micro arrays. BMC Bioinformatics, 2006, 7, 239.	2.6	24
69	Exploring genomic dark matter: A critical assessment of the performance of homology search methods on noncoding RNA. Genome Research, 2006, 17, 117-125.	5.5	121
70	Measuring covariation in RNA alignments: physical realism improves information measures. Bioinformatics, 2006, 22, 2988-2995.	4.1	52
71	A comparison of RNA folding measures. BMC Bioinformatics, 2005, 6, 241.	2.6	101
72	A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Research, 2005, 33, 2433-2439.	14.5	242

PAUL P GARDNER

#	Article	IF	CITATIONS
73	Predicting RNA Structure Using Mutual Information. Applied Bioinformatics, 2005, 4, 53-59.	1.6	25
74	A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics, 2004, 5, 140.	2.6	291
75	Optimal alphabets for an RNA world. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1177-1182.	2.6	19
76	A search for H/ACA snoRNAs in yeast using MFE secondary structure prediction. Bioinformatics, 2003, 19, 865-873.	4.1	38
77	Sequence Diversity and Functional Conservation of the Origin of Replication in Lactococcal Prolate Phages. Applied and Environmental Microbiology, 2003, 69, 5104-5114.	3.1	7
78	RNA Folding Argues Against a Hot-Start Origin of Life. Journal of Molecular Evolution, 2000, 51, 416-421.	1.8	43