Anna Kuparinen

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/6131878/publications.pdf
Version: 2024-02-01

 Animal Ecology, 2022, 91, 154-169.

2 Allee effects and the Allee-effect zone in northwest Atlantic cod. Biology Letters, 2022, 18, 20210439.
2.3

10

3 Gill area explains deviations from body size â€•metabolic rate relationship in teleost fishes. Journal of Fish Biology, 2022, , .
1.6

Are there plenty of fish in the sea? How life history traits affect the eco-evolutionary consequences
$4 \begin{aligned} & \text { Are there plenty of fish in the sea? How life history traits affect the } \\ & \text { of population oscillations. Fisheries Research, 2022, 254, } 106409 .\end{aligned}$
$1.7 \quad 1$

A modified niche model for generating food webs with stageâ€structured consumers: The stabilizing
effects of lifeâ€history stages on complex food webs. Ecology and Evolution, 2021, 11, 4101-4125.
1.9

Throwing down a genomic gauntlet on fisheries-induced evolution. Proceedings of the National
6 Academy of Sciences of the United States of America, 2021, 118, .
$7.1 \quad 14$

7 Marine food web perspective to fisheriesâ€induced evolution. Evolutionary Applications, 2021, 14,
7 2378-2391.

Corrigendum to: When phenotypes fail to illuminate underlying genetic processes in fish and fisheries science. ICES Journal of Marine Science, 2021, 78, 1554-1554.
2.5

0

```
Multipleâ€batch spawning as a betâ€hedging strategy in highly stochastic environments: An exploratory
```

9 analysis of Atlantic cod. Evolutionary Applications, 2021, 14, 1980-1992.

Age is not just a numberâ€"Mathematical model suggests senescence affects how fish populations respond to different fishing regimes. Ecology and Evolution, 2021, 11, 13363-13378.
1.9

3

$10 \quad$| Age is not just a numberâ ""Mathematical model suggests senescence affects how fish $_{\text {respond to different fishing regimes. Ecology and Evolution, 2021, 11, 13363-13378. }}$ |
| :--- |

> The effect of fish life-history structures on the topologies of aquatic food webs. Food Webs, 2021, , e00213.
1.23

Consequences of Single-Locus and Tightly Linked Genomic Architectures for Evolutionary Responses to Environmental Change. Journal of Heredity, 2020, 111, 319-332.
2.4

36

3

13 Exploring individual and population eco-evolutionary feedbacks under the coupled effects of fishing
$1.7 \quad 5$
and predation. Fisheries Research, 2020, 231, 105713.

Ecoâ€evolutionary dynamics driven by fishing: From single species models to dynamic evolution within
$3.1 \quad 9$ complex food webs. Evolutionary Applications, 2020, 13, 2507-2520.

Attuning to a changing ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20363-20371.
Cyclical and stochastic thermal variability affects survival and growth in brook trout. Journal of
Thermal Biology, 2019, 84, 221-227.

The role of fish life histories in allometrically scaled foodâ€web dynamics. Ecology and Evolution, 2019,

```
27 Empirical links between natural mortality and recovery in marine fishes. Proceedings of the RoyalEmpirical links between natural mortality and recovery in marine fishes. Proceedings of the Royal
```Society B: Biological Sciences, 2017, 284, 20170693.
\(2.6 \quad 18\)
27 Society B: Biological Sciences, 2017, 284, 20170693.

Genetic architecture of age at maturity can generate divergent and disruptive harvest-induced evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160035.

Age at maturation has sex- and temperature-specific effects on telomere length in a fish. Oecologia,

A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative
vegetation reconstruction. Vegetation History and Archaeobotany, 2016, 25, 541-553.

Trends and management implications of humanâ€influenced lifeâ€history changes in marine ectotherms. Fish and Fisheries, 2016, 17, 1005-1028.

Small-scale life history variability suggests potential for spatial mismatches in Atlantic cod management units. ICES Journal of Marine Science, 2016, 73, 286-292.

Assessing abundance of populations with limited data: Lessons learned from data-poor fisheries stock assessment. Environmental Reviews, 2016, 24, 25-38.

The evolutionary legacy of sizeâ€selective harvesting extends from genes to populations. Evolutionary
Applications, 2015, 8, 597-620.

The impacts of fish body size changes on stock recovery: a case study using an Australian marine ecosystem model. ICES Journal of Marine Science, 2015, 72, 782-792.

Effects of changes in land management practices on pollen productivity of open vegetation during the
last century derived from varved lake sediments. Holocene, 2015, 25, 733-744.

Connecting the Seas of Norden. Nature Climate Change, 2015, 5, 89-92.

Detecting regime shifts in fish stock dynamics. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1619-1628.

Increased environmentally driven recruitment variability decreases resilience to fishing and increases uncertainty of recovery. ICES Journal of Marine Science, 2014, 71, 1507-1514.

> Fundamental populationâ€"productivity relationships can be modified through densityâ€dependent
> feedbacks of lifeâ€history evolution. Evolutionary Applications, \(2014,7,1218-1225\).

Bright moonlight triggers natal dispersal departures. Behavioral Ecology and Sociobiology, 2014, 68, 743.

49 Allee Effect and the Uncertainty of Population Recovery. Conservation Biology, 2014, 28, 790-798.
4.7

52

Corylus expansion and persistent openness in the early Holocene vegetation of northern central Europe. Quaternary Science Reviews, 2014, 90, 183-198.

Chosts of fisheries-induced depletions: do they haunt us still?. ICES Journal of Marine Science, 2014, 71,
1467-1473.

Increased natural mortality at low abundance can generate an Allee effect in a marine fish. Royal Society Open Science, 2014, 1, 140075.

Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact. Biology Letters, 2013, 9, 20121103.
2.3

134

How fast is fisheriesâ€induced evolution? Quantitative analysis of modelling and empirical studies.
Evolutionary Applications, 2013, 6, 585-595.
55 Responses of a top and a meso predator and their prey to moon phases. Oecologia, 2013, 173, 753-766. 74

56 Pollen productivity estimates strongly depend on assumed pollen dispersal. Holocene, 2013, 23, 14-24.
Genetic and lifeâ€history changes associated with fisheriesâ€induced population collapse. Evolutionary
Applications, 2013, 6, 749-760.

Effective size and genetic composition of two exploited, migratory whitefish (Coregonus lavaretus) Tj ETQq0 00 rgBI /Overlock 10 Tf 5
\begin{tabular}{|c|c|c|c|}
\hline 59 & Increasing biological realism of fisheries stock assessment: towards hierarchical Bayesian methods. Environmental Reviews, 2012, 20, 135-151. & 4.5 & 45 \\
\hline 60 & Consequences of fisheries-induced evolution for population productivity and recovery potential. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2571-2579. & 2.6 & 84 \\
\hline 61 & Lifeâ€history correlates of extinction risk and recovery potential. Ecological Applications, 2012, 22, 1061-1067. & 3.8 & 162 \\
\hline 62 & Evolutionary and ecological feedbacks of the survival cost of reproduction. Evolutionary Applications, 2012, 5, 245-255. & 3.1 & 38 \\
\hline 63 & Longâ€distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 2012, 15, 378-392. & 6.4 & 550 \\
\hline 64 & Contrasting growth strategies of pond versus marine populations of nine-spined stickleback (Pungitius pungitius): a combined effect of predation and competition?. Evolutionary Ecology, 2012, 26, 109-122. & 1.2 & 29 \\
\hline
\end{tabular}
65 Quantitative Genetics of Body Size and Timing of Maturation in Two Nine-Spined Stickleback (Pungitius) Tj ETQq1 1.5 .784314 rgBT /

Spread of North American wind-dispersed trees in future environments. Ecology Letters, 2011, 14, 211-219.
6.4

160

> Theory put into practice: An R implementation of the infinite-dimensional model. Ecological
> Modelling, \(2011,222,2027-2030\).
2.5

3

Individual status, foraging effort and need for conspicuousness shape behavioural responses of a predator to moon phases. Animal Behaviour, 2011, 82, 413-420.
1.9
age at maturation is influenced by temperature independently of growth. Oecologia, 2011, 167,
2.0

53

70 Mechanistic models of seed dispersal by wind. Theoretical Ecology, 2011, 4, 113-132.
1.0

157

Effective size of an Atlantic salmon (Salmo salar L.) metapopulation in Northern Spain. Conservation
1.5
\begin{tabular}{|c|c|c|c|}
\hline 73 & Abiotic and fishing-related correlates of angling catch rates in pike (Esox lucius). Fisheries Research, 2010, 105, 111-117. & 1.7 & 75 \\
\hline 74 & Variation in the timing of river entry of Atlantic salmon (Salmo salar L.) in the Baltic. Environmental Epigenetics, 2009, 55, 342-349. & 1.8 & 3 \\
\hline 75 & Increases in air temperature can promote wind-driven dispersal and spread of plants. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3081-3087. & 2.6 & 72 \\
\hline 76 & Estimating fisheriesấfinduced selection: traditional gear selectivity research meets fisheriesấ̂induced evolution. Evolutionary Applications, 2009, 2, 234-243. & 3.1 & 65 \\
\hline 77 & Assessing the risk of gene flow from genetically modified trees carrying mitigation transgenes. Biological Invasions, 2008, 10, 281-290. & 2.4 & 10 \\
\hline 78 & The role of growth history in determining age and size at maturation in exploited fish populations. Fish and Fisheries, 2008, 9, 201-207. & 5.3 & 19 \\
\hline 79 & Probabilistic Models for Continuous Ontogenetic Transition Processes. PLoS ONE, 2008, 3, e3677. & 2.5 & 4 \\
\hline 80 & Detecting and managing fisheries-induced evolution. Trends in Ecology and Evolution, 2007, 22, 652-659. & 8.7 & 400 \\
\hline 81 & AIR-MEDIATED POLLEN FLOW FROM GENETICALLY MODIFIED TO CONVENTIONAL CROPS. , 2007, 17, 431-440. & & 40 \\
\hline
\end{tabular}

A flexible modelling framework linking the spatio-temporal dynamics of plant genotypes and

84 Mechanistic models for wind dispersal. Trends in Plant Science, 2006, 11, 296-301.
8.8

132```

