Anna Kuparinen

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/6131878/publications.pdf
Version: 2024-02-01


```
1 Longâ€distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 2012,
15, 378-392.9 Increased mortality can promote evolutionary adaptation of forest trees to climate change. ForestEcology and Management, 2010, 259, 1003-1008.
Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecological Modelling, 2007, 208, 177-188.
Harvest-induced evolution: insights from aquatic and terrestrial sy
of the Royal Society B: Biological Sciences, 2017, 372, 20160036.2.5109
95
12 Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Scientific Reports,2016, 6, 22245.3.389How fast is fisheriesâ€induced evolution? Quantitative analysis of modelling and empirical studies.3.186
Evolutionary Applications, 2013, 6, 585-595.
19 Pollen productivity estimates strongly depend on assumed pollen dispersal. Holocene, 2013, 23, 14-24. 72

20 Estimating fisheriesâ€induced selection: traditional gear selectivity research meets fisheriesâ€induced
\(3.1 \quad 65\)
evolution. Evolutionary Applications, 2009, 2, 234-243.
65

Assessing abundance of populations with limited data: Lessons learned from data-poor fisheries stock
assessment. Environmental Reviews, 2016, 24, 25-38.
\(4.5 \quad 61\)

Fish age at maturation is influenced by temperature independently of growth. Oecologia, 2011, 167,
435-443.
2.0

53

23 Toward a mechanistic understanding of vulnerability to hookâ€andâ€line fishing: Boldness as the basic
target of anglingâ€induced selection. Evolutionary Applications, 2017, 10, 994-1006.
\(3.1 \quad 53\)

24 Allee Effect and the Uncertainty of Population Recovery. Conservation Biology, 2014, 28, 790-798.
\(4.7 \quad 52\)
25 A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative
vegetation reconstruction. Vegetation History and Archaeobotany, 2016, 25, 541-553.
Individual status, foraging effort and need for conspicuousness shape behavioural responses of a predator to moon phases. Animal Behaviour, 2011, 82, 413-420.
2.1

52
1.9

45
```

27 Increasing biological realism of fisheries stock assessment: towards hierarchical Bayesian methods.
Environmental Reviews, 2012, 20, 135-151.

```

Corylus expansion and persistent openness in the early Holocene vegetation of northern central
Europe. Quaternary Science Reviews, 2014, 90, 183-198.
3.0

42

> 29 Effects of changes in land management practices on pollen productivity of open vegetation during the
> last century derived from varved lake sediments. Holocene, 2015, \(25,733-744\).
\(1.7 \quad 41\)

30 AIR-MEDIATED POLLEN FLOW FROM GENETICALLY MODIFIED TO CONVENTIONAL CROPS. , 2007, 17, 431-440.
40

Evolutionary and ecological feedbacks of the survival cost of reproduction. Evolutionary
Applications, 2012, 5, 245-255.
A flexible modelling framework linking the spatio-temporal dynamics of plant genotypes and
32 populations: Application to gene flow from transgenic forests. Ecological Modelling, 2007, 202, 476-486.

Quantitative Genetics of Body Size and Timing of Maturation in Two Nine-Spined Stickleback (Pungitius) Tj ETQq1 \(1_{2.5}^{0.784314} \mathrm{H}_{36} \mathrm{rgBT} / \mathrm{C}\)

Genetic and lifeâ€history changes associated with fisheriesâ€induced population collapse. Evolutionary
Contrasting growth strategies of pond versus marine populations of nine-spined stickleback
37
(Pungitius pungitius): a combined effect of predation and competition?. Evolutionary Ecology, 2012, 26,
\(109-122\).

38 Fundamental populationâ€"productivity relationships can be modified through densityâ€dependent feedbacks of lifeâ€history evolution. Evolutionary Applications, 2014, 7, 1218-1225.
3.1

29
Harvestâ€induced evolution and effective population size. Evolutionary Applications, 2016, 9, \(658-6\)
\(40 \quad\)\begin{tabular}{l} 
Implications of fisheriesấinduced evolution for population recovery: Refocusing the science and \\
refining its communication. Fish and Fisheries, 2020, 21, 453-464.
\end{tabular}
\(3.1 \quad 29\)
refining its communication. Fish and Fisheries, 2020, 21, 453-464.
5.3

29

Detection of Allee effects in marine fishes: analytical biases generated by data availability and model selection. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171284.
\(2.6 \quad 28\)

Increased environmentally driven recruitment variability decreases resilience to fishing and increases
2.5

27 uncertainty of recovery. ICES Journal of Marine Science, 2014, 71, 1507-1514.
43 Connecting the Seas of Norden. Nature Climate Change, 2015, 5, 89-92.
\(44 \quad\)\begin{tabular}{l} 
Increased natural mortality at low abundance can generate an Allee effect in a marine fish. Royal \\
Society Open Science, 2014, 1, 140075.
\end{tabular}
45 Effective size of an Atlantic salmon (Salmo salar L.) metapopulation in Northern Spain. Conservation Genetics, 2010, 11, 1559-1565.
\(46 \quad\) Altered trait variability in response to size-selective mortality. Biology Letters, 2016, 12, 20160584.
2.3

20
47 The role of growth history in determining age and size at maturation in exploited fish populations. Fish and Fisheries, 2008, 9, 201-207.
\(5.3 \quad 19\)
2.6

Small-scale life history variability suggests potential for spatial mismatches in Atlantic cod

Examining nonstationarity in the recruitment dynamics of fishes using Bayesian change point analysis.

The role of fish life histories in allometrically scaled foodâ€web dynamics. Ecology and Evolution, 2019,
\begin{tabular}{|c|c|c|}
\hline 55 & Detecting regime shifts in fish stock dynamics. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1619-1628. & 1.4 \\
\hline 56 & Multipleâ€batch spawning as a betâ€hedging strategy in highly stochastic environments: An exploratory analysis of Atlantic cod. Evolutionary Applications, 2021, 14, 1980-1992. & 3.1 \\
\hline 57 & Age at maturation has sex-and temperature-specific effects on telomere length in a fish. Oecologia, 2017, 184, 767-777. & 2.0 \\
\hline 58 & Environmentallyâ€ induced noise dampens and reddens with increasing trophic level in a complex food web. Oikos, 2019, 128, 608-620. & 2.7 \\
\hline 59 & Size does matter â€" the eco-evolutionary effects of changing body size in fish. Environmental Reviews, 2020, 28, 311-324. & 4.5 \\
\hline
\end{tabular}
60 When phenotypes fail to illuminate underlying genetic processes in fish and fisheries science. ICES

Journal of Marine Science, 2019, 76, 999-1006.
\(2.5 \quad 11\)
Assessing the risk of gene flow from genetically modified trees carrying mitigation transgenes.
Biological Invasions, 2008, 10, 281-290.

The impacts of fish body size changes on stock recovery: a case study using an Australian marine ecosystem model. ICES Journal of Marine Science, 2015, 72, 782-792.

63 Allee effects and the Allee-effect zone in northwest Atlantic cod. Biology Letters, 2022, 18, 20210439.
2.3

10

Ghosts of fisheries-induced depletions: do they haunt us still?. ICES Journal of Marine Science, 2014, 71, 1467-1473.
\begin{tabular}{|c|c|c|c|}
\hline 65 & Ecoâ€evolutionary dynamics driven by fishing: From single species models to dynamic evolution within complex food webs. Evolutionary Applications, 2020, 13, 2507-2520. & 3.1 & 9 \\
\hline 66 & Attuning to a changing ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20363-20371. & 7.1 & 9 \\
\hline 67 & Cyclical and stochastic thermal variability affects survival and growth in brook trout. Journal of Thermal Biology, 2019, 84, 221-227. & 2.5 & 7 \\
\hline
\end{tabular}

Effective size and genetic composition of two exploited, migratory whitefish (Coregonus lavaretus) Tj ETQq0 \(00 \mathrm{rgBT} / \mathrm{Overlock} 10 \mathrm{Tf} 5\)
\begin{tabular}{|c|c|c|c|}
\hline 69 & Speciesâ \(\epsilon^{T M}\) ecological functionality alters the outcome of fish stocking success predicted by a food-web model. Royal Society Open Science, 2018, 5, 180465. & 2.4 & 5 \\
\hline 70 & Exploring individual and population eco-evolutionary feedbacks under the coupled effects of fishing and predation. Fisheries Research, 2020, 231, 105713. & 1.7 & 5 \\
\hline 71 & Bright moonlight triggers natal dispersal departures. Behavioral Ecology and Sociobiology, 2014, 68, 743. & 1.4 & 4 \\
\hline
\end{tabular}
```

Variation in the timing of river entry of Atlantic salmon (Salmo salar L.) in the Baltic. Environmental

80 The effect of fish life-history structures on the topologies of aquatic food webs. Food Webs, 2021, , e00213.

Sustainability of Fishing Is about Abundance: A Response to Bernatchez et al.. Trends in Ecology and
81 Evolution, 2018, 33, 307-308.

Species interactions, environmental gradients and body size shape population niche width. Journal of

