List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Longâ€distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 2012, 15, 378-392.	6.4	550
2	Detecting and managing fisheries-induced evolution. Trends in Ecology and Evolution, 2007, 22, 652-659.	8.7	400
3	Lifeâ€history correlates of extinction risk and recovery potential. Ecological Applications, 2012, 22, 1061-1067.	3.8	162
4	Spread of North American wind-dispersed trees in future environments. Ecology Letters, 2011, 14, 211-219.	6.4	160
5	Mechanistic models of seed dispersal by wind. Theoretical Ecology, 2011, 4, 113-132.	1.0	157
6	The evolutionary legacy of sizeâ€selective harvesting extends from genes to populations. Evolutionary Applications, 2015, 8, 597-620.	3.1	142
7	Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact. Biology Letters, 2013, 9, 20121103.	2.3	134
8	Mechanistic models for wind dispersal. Trends in Plant Science, 2006, 11, 296-301.	8.8	132
9	Increased mortality can promote evolutionary adaptation of forest trees to climate change. Forest Ecology and Management, 2010, 259, 1003-1008.	3.2	129
10	Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecological Modelling, 2007, 208, 177-188.	2.5	109
11	Harvest-induced evolution: insights from aquatic and terrestrial systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160036.	4.0	95
12	Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Scientific Reports, 2016, 6, 22245.	3.3	89
13	How fast is fisheriesâ€induced evolution? Quantitative analysis of modelling and empirical studies. Evolutionary Applications, 2013, 6, 585-595.	3.1	86
14	Consequences of fisheries-induced evolution for population productivity and recovery potential. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2571-2579.	2.6	84
15	Trends and management implications of humanâ€influenced lifeâ€history changes in marine ectotherms. Fish and Fisheries, 2016, 17, 1005-1028.	5.3	76
16	Abiotic and fishing-related correlates of angling catch rates in pike (Esox lucius). Fisheries Research, 2010, 105, 111-117.	1.7	75
17	Responses of a top and a meso predator and their prey to moon phases. Oecologia, 2013, 173, 753-766.	2.0	74
18	Increases in air temperature can promote wind-driven dispersal and spread of plants. Proceedings of the Roval Society B: Biological Sciences, 2009, 276, 3081-3087.	2.6	72

#	Article	IF	CITATIONS
19	Pollen productivity estimates strongly depend on assumed pollen dispersal. Holocene, 2013, 23, 14-24.	1.7	72
20	Estimating fisheriesâ€induced selection: traditional gear selectivity research meets fisheriesâ€induced evolution. Evolutionary Applications, 2009, 2, 234-243.	3.1	65
21	Assessing abundance of populations with limited data: Lessons learned from data-poor fisheries stock assessment. Environmental Reviews, 2016, 24, 25-38.	4.5	61
22	Fish age at maturation is influenced by temperature independently of growth. Oecologia, 2011, 167, 435-443.	2.0	53
23	Toward a mechanistic understanding of vulnerability to hookâ€andâ€ŀine fishing: Boldness as the basic target of anglingâ€induced selection. Evolutionary Applications, 2017, 10, 994-1006.	3.1	53
24	Allee Effect and the Uncertainty of Population Recovery. Conservation Biology, 2014, 28, 790-798.	4.7	52
25	A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative vegetation reconstruction. Vegetation History and Archaeobotany, 2016, 25, 541-553.	2.1	52
26	Individual status, foraging effort and need for conspicuousness shape behavioural responses of a predator to moon phases. Animal Behaviour, 2011, 82, 413-420.	1.9	45
27	Increasing biological realism of fisheries stock assessment: towards hierarchical Bayesian methods. Environmental Reviews, 2012, 20, 135-151.	4.5	45
28	Corylus expansion and persistent openness in the early Holocene vegetation of northern central Europe. Quaternary Science Reviews, 2014, 90, 183-198.	3.0	42
29	Effects of changes in land management practices on pollen productivity of open vegetation during the last century derived from varved lake sediments. Holocene, 2015, 25, 733-744.	1.7	41
30	AIR-MEDIATED POLLEN FLOW FROM GENETICALLY MODIFIED TO CONVENTIONAL CROPS. , 2007, 17, 431-440.		40
31	Evolutionary and ecological feedbacks of the survival cost of reproduction. Evolutionary Applications, 2012, 5, 245-255.	3.1	38
32	A flexible modelling framework linking the spatio-temporal dynamics of plant genotypes and populations: Application to gene flow from transgenic forests. Ecological Modelling, 2007, 202, 476-486.	2.5	36
33	Quantitative Genetics of Body Size and Timing of Maturation in Two Nine-Spined Stickleback (Pungitius) Tj ETQq	1 1 0.784 2.5	314 rgBT /0
34	Genetic and lifeâ€history changes associated with fisheriesâ€induced population collapse. Evolutionary Applications, 2013, 6, 749-760.	3.1	36
35	Consequences of Single-Locus and Tightly Linked Genomic Architectures for Evolutionary Responses to Environmental Change. Journal of Heredity, 2020, 111, 319-332.	2.4	36
36	Genetic architecture of age at maturity can generate divergent and disruptive harvest-induced evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160035.	4.0	31

#	Article	IF	CITATIONS
37	Contrasting growth strategies of pond versus marine populations of nine-spined stickleback (Pungitius pungitius): a combined effect of predation and competition?. Evolutionary Ecology, 2012, 26, 109-122.	1.2	29
38	Fundamental population–productivity relationships can be modified through densityâ€dependent feedbacks of lifeâ€history evolution. Evolutionary Applications, 2014, 7, 1218-1225.	3.1	29
39	Harvestâ€induced evolution and effective population size. Evolutionary Applications, 2016, 9, 658-672.	3.1	29
40	Implications of fisheriesâ€induced evolution for population recovery: Refocusing the science and refining its communication. Fish and Fisheries, 2020, 21, 453-464.	5.3	29
41	Detection of Allee effects in marine fishes: analytical biases generated by data availability and model selection. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171284.	2.6	28
42	Increased environmentally driven recruitment variability decreases resilience to fishing and increases uncertainty of recovery. ICES Journal of Marine Science, 2014, 71, 1507-1514.	2.5	27
43	Connecting the Seas of Norden. Nature Climate Change, 2015, 5, 89-92.	18.8	25
44	Increased natural mortality at low abundance can generate an Allee effect in a marine fish. Royal Society Open Science, 2014, 1, 140075.	2.4	21
45	Effective size of an Atlantic salmon (Salmo salar L.) metapopulation in Northern Spain. Conservation Genetics, 2010, 11, 1559-1565.	1.5	20
46	Altered trait variability in response to size-selective mortality. Biology Letters, 2016, 12, 20160584.	2.3	20
47	The role of growth history in determining age and size at maturation in exploited fish populations. Fish and Fisheries, 2008, 9, 201-207.	5.3	19
48	Empirical links between natural mortality and recovery in marine fishes. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170693.	2.6	18
49	The role of life histories and trophic interactions in population recovery. Conservation Biology, 2016, 30, 734-743.	4.7	17
50	Small-scale life history variability suggests potential for spatial mismatches in Atlantic cod management units. ICES Journal of Marine Science, 2016, 73, 286-292.	2.5	14
51	Examining nonstationarity in the recruitment dynamics of fishes using Bayesian change point analysis. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 751-765.	1.4	14
52	The role of fish life histories in allometrically scaled foodâ€web dynamics. Ecology and Evolution, 2019, 9, 3651-3660.	1.9	14
53	Throwing down a genomic gauntlet on fisheries-induced evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
54	Marine food web perspective to fisheriesâ€induced evolution. Evolutionary Applications, 2021, 14, 2378-2391.	3.1	14

#	Article	IF	CITATIONS
55	Detecting regime shifts in fish stock dynamics. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1619-1628.	1.4	13
56	Multipleâ€batch spawning as a betâ€hedging strategy in highly stochastic environments: An exploratory analysis of Atlantic cod. Evolutionary Applications, 2021, 14, 1980-1992.	3.1	13
57	Age at maturation has sex- and temperature-specific effects on telomere length in a fish. Oecologia, 2017, 184, 767-777.	2.0	13
58	Environmentallyâ€induced noise dampens and reddens with increasing trophic level in a complex food web. Oikos, 2019, 128, 608-620.	2.7	12
59	Size does matter — the eco-evolutionary effects of changing body size in fish. Environmental Reviews, 2020, 28, 311-324.	4.5	12
60	When phenotypes fail to illuminate underlying genetic processes in fish and fisheries science. ICES Journal of Marine Science, 2019, 76, 999-1006.	2.5	11
61	Assessing the risk of gene flow from genetically modified trees carrying mitigation transgenes. Biological Invasions, 2008, 10, 281-290.	2.4	10
62	The impacts of fish body size changes on stock recovery: a case study using an Australian marine ecosystem model. ICES Journal of Marine Science, 2015, 72, 782-792.	2.5	10
63	Allee effects and the Allee-effect zone in northwest Atlantic cod. Biology Letters, 2022, 18, 20210439.	2.3	10
64	Ghosts of fisheries-induced depletions: do they haunt us still?. ICES Journal of Marine Science, 2014, 71, 1467-1473.	2.5	9
65	Ecoâ€evolutionary dynamics driven by fishing: From single species models to dynamic evolution within complex food webs. Evolutionary Applications, 2020, 13, 2507-2520.	3.1	9
66	Attuning to a changing ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20363-20371.	7.1	9
67	Cyclical and stochastic thermal variability affects survival and growth in brook trout. Journal of Thermal Biology, 2019, 84, 221-227.	2.5	7
68	Effective size and genetic composition of two exploited, migratory whitefish (Coregonus lavaretus) Tj ETQq0 0	0 rgßJ /Ov	erlock 10 Tf 5
69	Species' ecological functionality alters the outcome of fish stocking success predicted by a food-web model. Royal Society Open Science, 2018, 5, 180465.	2.4	5
70	Exploring individual and population eco-evolutionary feedbacks under the coupled effects of fishing and predation. Fisheries Research, 2020, 231, 105713.	1.7	5
71	Bright moonlight triggers natal dispersal departures. Behavioral Ecology and Sociobiology, 2014, 68, 743.	1.4	4
72	The mechanistic basis of demographic Allee effects: The search for mates. Journal of Animal Ecology,	2.8	4

2018, 87, 4-6.

#	Article	IF	CITATIONS
73	Atlantic cod recovery from the Allee effect zone: contrasting ecological and evolutionary rescue. Fish and Fisheries, 2020, 21, 916-926.	5.3	4
74	A modified niche model for generating food webs with stageâ€structured consumers: The stabilizing effects of lifeâ€history stages on complex food webs. Ecology and Evolution, 2021, 11, 4101-4125.	1.9	4
75	Probabilistic Models for Continuous Ontogenetic Transition Processes. PLoS ONE, 2008, 3, e3677.	2.5	4
76	Temporary Allee effects among nonâ€stationary recruitment dynamics in depleted gadid and flatfish populations. Fish and Fisheries, 0, , .	5.3	4
77	Variation in the timing of river entry of Atlantic salmon (Salmo salar L.) in the Baltic. Environmental Epigenetics, 2009, 55, 342-349.	1.8	3
78	Theory put into practice: An R implementation of the infinite-dimensional model. Ecological Modelling, 2011, 222, 2027-2030.	2.5	3
79	Age is not just a number—Mathematical model suggests senescence affects how fish populations respond to different fishing regimes. Ecology and Evolution, 2021, 11, 13363-13378.	1.9	3
80	The effect of fish life-history structures on the topologies of aquatic food webs. Food Webs, 2021, , e00213.	1.2	3
81	Sustainability of Fishing Is about Abundance: A Response to Bernatchez et al Trends in Ecology and Evolution, 2018, 33, 307-308.	8.7	2
82	Species interactions, environmental gradients and body size shape population niche width. Journal of Animal Ecology, 2022, 91, 154-169.	2.8	2
83	Gill area explains deviations from body size ―metabolic rate relationship in teleost fishes. Journal of Fish Biology, 2022, , .	1.6	2
84	Are there plenty of fish in the sea? How life history traits affect the eco-evolutionary consequences of population oscillations. Fisheries Research, 2022, 254, 106409.	1.7	1
85	Corrigendum to: When phenotypes fail to illuminate underlying genetic processes in fish and fisheries science. ICES Journal of Marine Science, 2021, 78, 1554-1554.	2.5	Ο