Santosh Aryal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10980-10985.	7.1	1,749
2	Nanoparticle-assisted combination therapies for effective cancer treatment. Therapeutic Delivery, 2010, 1, 323-334.	2.2	471
3	Polymerâ^'Cisplatin Conjugate Nanoparticles for Acid-Responsive Drug Delivery. ACS Nano, 2010, 4, 251-258.	14.6	370
4	Spectroscopic identification of SAu interaction in cysteine capped gold nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 160-163.	3.9	257
5	Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomaterialia, 2019, 94, 482-494.	8.3	249
6	Bacterial Toxin-Triggered Drug Release from Gold Nanoparticle-Stabilized Liposomes for the Treatment of Bacterial Infection. Journal of the American Chemical Society, 2011, 133, 4132-4139.	13.7	243
7	Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. Journal of Materials Chemistry, 2009, 19, 7879.	6.7	185
8	Half-Antibody Functionalized Lipidâ^Polymer Hybrid Nanoparticles for Targeted Drug Delivery to Carcinoembryonic Antigen Presenting Pancreatic Cancer Cells. Molecular Pharmaceutics, 2010, 7, 914-920.	4.6	181
9	Polymeric Nanoparticles with Precise Ratiometric Control over Drug Loading for Combination Therapy. Molecular Pharmaceutics, 2011, 8, 1401-1407.	4.6	180
10	Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials, 2018, 160, 124-137.	11.4	171
11	Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine, 2013, 8, 1271-1280.	3.3	166
12	Combinatorial Drug Conjugation Enables Nanoparticle Dualâ€Đrug Delivery. Small, 2010, 6, 1442-1448.	10.0	162
13	Quick Synthesis of Lipidâ `Polymer Hybrid Nanoparticles with Low Polydispersity Using a Single-Step Sonication Method. Langmuir, 2010, 26, 16958-16962.	3.5	160
14	Soft Discoidal Polymeric Nanoconstructs Resist Macrophage Uptake and Enhance Vascular Targeting in Tumors. ACS Nano, 2015, 9, 11628-11641.	14.6	148
15	Stimuli-Responsive Liposome Fusion Mediated by Gold Nanoparticles. ACS Nano, 2010, 4, 1935-1942.	14.6	145
16	Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning. Materials Science and Engineering C, 2008, 28, 75-79.	7.3	109
17	Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nano-matrix. Scripta Materialia, 2006, 54, 131-135.	5.2	104
18	Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids. Journal of Colloid and Interface Science, 2006, 299, 191-197.	9.4	98

#	Article	IF	CITATIONS
19	An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles. Talanta, 2009, 78, 1401-1407.	5.5	94
20	Biodistribution of gadolinium- and near infrared-labeled human umbilical cord mesenchymal stromal cell-derived exosomes in tumor bearing mice. Theranostics, 2019, 9, 2325-2345.	10.0	93
21	Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery. International Journal of Biological Macromolecules, 2009, 44, 346-352.	7.5	87
22	Carbon nanotubes assisted biomimetic synthesis of hydroxyapatite from simulated body fluid. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 426, 202-207.	5.6	82
23	Synthesis and Characterization of Lipid–Polymer Hybrid Nanoparticles with pH-Triggered Poly(ethylene glycol) Shedding. Langmuir, 2011, 27, 10556-10561.	3.5	80
24	N-Acylated chitosan stabilized iron oxide nanoparticles as a novel nano-matrix and ceramic modification. Carbohydrate Polymers, 2007, 69, 467-477.	10.2	73
25	Nanoparticledrug delivery enhances the cytotoxicity of hydrophobic–hydrophilic drug conjugates. Journal of Materials Chemistry, 2012, 22, 994-999.	6.7	70
26	Overcoming Nanoparticle-Mediated Complement Activation by Surface PEG Pairing. Nano Letters, 2020, 20, 4312-4321.	9.1	70
27	pH-responsive cationic liposome for endosomal escape mediated drug delivery. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110804.	5.0	65
28	Biomimetic Natural Killer Membrane Camouflaged Polymeric Nanoparticle for Targeted Bioimaging. Advanced Functional Materials, 2019, 29, 1806817.	14.9	64
29	Novel self-assembled amphiphilic poly(ε-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles. Journal of Materials Science: Materials in Medicine, 2009, 20, 821-831.	3.6	60
30	Large-Scale Synthesis of Lipid–Polymer Hybrid Nanoparticles Using a Multi-Inlet Vortex Reactor. Langmuir, 2012, 28, 13824-13829.	3.5	59
31	Engineered magnetic hybrid nanoparticles with enhanced relaxivity for tumor imaging. Biomaterials, 2013, 34, 7725-7732.	11.4	57
32	Surface functionalization strategies of extracellular vesicles. Journal of Materials Chemistry B, 2020, 8, 4552-4569.	5.8	57
33	Positron Emitting Magnetic Nanoconstructs for PET/MR Imaging. Small, 2014, 10, 2688-2696.	10.0	55
34	Hydrophobically modified chitosan/gold nanoparticles for DNA delivery. Journal of Nanoparticle Research, 2008, 10, 151-162.	1.9	53
35	Synthesis of Multifunctional Magnetic NanoFlakes for Magnetic Resonance Imaging, Hyperthermia, and Targeting ACS Applied Materials & amp; Interfaces, 2014, 6, 12939-12946.	8.0	53
36	Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation. Advanced Functional Materials, 2014, 24, 4584-4594.	14.9	50

#	Article	IF	CITATIONS
37	Novel amphiphilic triblock copolymer based on PPDO, PCL, and PEG: Synthesis, characterization, and aqueous dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292, 69-78.	4.7	47
38	Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility. Applied Surface Science, 2010, 256, 5882-5887.	6.1	44
39	Immobilization of collagen on gold nanoparticles: preparation, characterization, and hydroxyapatite growth. Journal of Materials Chemistry, 2006, 16, 4642.	6.7	43
40	Rosiglitazone-loaded nanospheres for modulating macrophage-specific inflammation in obesity. Journal of Controlled Release, 2013, 170, 460-468.	9.9	41
41	Engineering discoidal polymeric nanoconstructs with enhanced magneto-optical properties for tumor imaging. Biomaterials, 2013, 34, 5402-5410.	11.4	41
42	Enhancing photothermal cancer therapy by clustering gold nanoparticles into spherical polymeric nanoconstructs. Optics and Lasers in Engineering, 2016, 76, 74-81.	3.8	41
43	Encapsulation of Fe ₃ O ₄ in gelatin nanoparticles: Effect of different parameters on size and stability of the colloidal dispersion. Journal of Microencapsulation, 2008, 25, 21-30.	2.8	40
44	Gelatin stabilized iron oxide nanoparticles as a three dimensional template for the hydroxyapatite crystal nucleation and growth. Materials Science and Engineering C, 2008, 28, 1297-1303.	7.3	38
45	Poly(ϵ aprolactone) grafted dextran biodegradable electrospun matrix: A novel scaffold for tissue engineering. Journal of Applied Polymer Science, 2008, 108, 1447-1454.	2.6	37
46	Nano-confinement-driven enhanced magnetic relaxivity of SPIONs for targeted tumor bioimaging. Nanoscale, 2018, 10, 284-294.	5.6	37
47	Preparation and drug release activity of scaffolds containing collagen and poly(caprolactone). Journal of Biomedical Materials Research - Part A, 2006, 79A, 153-158.	4.0	36
48	Engineered Nanomedicine with Alendronic Acid Corona Improves Targeting to Osteosarcoma. Scientific Reports, 2016, 6, 36707.	3.3	35
49	Radiolabeled Polymeric Nanoconstructs Loaded with Docetaxel and Curcumin for Cancer Combinatorial Therapy and Nuclear Imaging. Advanced Functional Materials, 2015, 25, 3371-3379.	14.9	34
50	Integration of gadolinium in nanostructure for contrast enhancedâ€nagnetic resonance imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1580.	6.1	33
51	Carbon nanotube-hydroxyapatite nanocomposite for DNA complexation. Materials Science and Engineering C, 2008, 28, 64-69.	7.3	32
52	Methotraxate‣oaded Hybrid Nanoconstructs Target Vascular Lesions and Inhibit Atherosclerosis Progression in ApoE ^{â^'/â^'} Mice. Advanced Healthcare Materials, 2017, 6, 1601286.	7.6	32
53	Strategic reconstruction of macrophage-derived extracellular vesicles as a magnetic resonance imaging contrast agent. Biomaterials Science, 2020, 8, 2887-2904.	5.4	32
54	Paramagnetic Gd3+ labeled red blood cells for magnetic resonance angiography. Biomaterials, 2016, 98, 163-170.	11.4	28

#	Article	IF	CITATIONS
55	Erythrocyte membrane concealed paramagnetic polymeric nanoparticle for contrast-enhanced magnetic resonance imaging. Nanoscale, 2020, 12, 4137-4149.	5.6	28
56	Engineered biomimetic nanoabsorbent for cellular detoxification of chemotherapeutics. RSC Advances, 2016, 6, 33003-33008.	3.6	27
57	Multifunctional Nano-Micelles Formed by Amphiphilic Gold-Polycaprolactone-Methoxy Poly(ethylene) Tj ETQq1 1 (and Nanotechnology, 2009, 9, 5701-5708.	0.784314 0.9	rgBT /Over 26
58	Membrane Fusion-Mediated Gold Nanoplating of Red Blood Cell: A Bioengineered CT-Contrast Agent. ACS Biomaterials Science and Engineering, 2017, 3, 36-41.	5.2	26
59	Gd ³ ⁺ Tethered Gold Nanorods for Combined Magnetic Resonance Imaging and Photo-Thermal Therapy. Journal of Biomedical Nanotechnology, 2017, 13, 417-426.	1.1	26
60	Stabilization of gold nanoparticles by hydrophobically-modified polycations. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 579-589.	3.5	25
61	Self-assembled amphiphilic polyhedral oligosilsesquioxane (POSS) grafted poly(vinyl alcohol) (PVA) nanoparticles. Materials Science and Engineering C, 2009, 29, 869-876.	7.3	25
62	Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity. Toxicology in Vitro, 2017, 43, 29-39.	2.4	25
63	The influence of polyethylene glycol passivation on the surface plasmon resonance induced photothermal properties of gold nanorods. Nanoscale, 2018, 10, 13684-13693.	5.6	24
64	Design and characterization of gadolinium infused theranostic liposomes. RSC Advances, 2016, 6, 36898-36905.	3.6	23
65	siRNA-Chitosan Complexes in Poly(lactic- <i>co</i> -glycolic acid) Nanoparticles for the Silencing of Aquaporin-1 in Cancer Cells. Molecular Pharmaceutics, 2013, 10, 3186-3194.	4.6	22
66	Biomimetic surface modification of discoidal polymeric particles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 79-87.	3.3	22
67	Stabilization of gold nanoparticles by thiol functionalized poly(É›-Caprolactone) for the labeling of PCL biocarrier. Materials Chemistry and Physics, 2006, 98, 463-469.	4.0	21
68	Synthesis of Ptsome: a platinum-based liposome-like nanostructure. Chemical Communications, 2012, 48, 2630.	4.1	20
69	Synthesis and Characterization of Biomimetic Hydroxyapatite Nanoconstruct Using Chemical Gradient across Lipid Bilayer. ACS Applied Materials & Interfaces, 2015, 7, 27382-27390.	8.0	19
70	Physicochemical characterization of self-assembled poly(â ^{~-} caprolactone) grafted dextran nanoparticles. Colloid and Polymer Science, 2008, 286, 517-524.	2.1	18
71	Opportunities for nanotheranosis in lung cancer and pulmonary metastasis. Clinical and Translational Imaging, 2014, 2, 427-437.	2.1	17
72	Elucidating the RNA Nano–Bio Interface: Mechanisms of Anticancer Poly I:C RNA and Zinc Oxide Nanoparticle Interaction. Journal of Physical Chemistry C, 2017, 121, 15702-15710.	3.1	16

#	Article	IF	CITATIONS
73	Enzyme and Cancer Cell Selectivity of Nanoparticles: Inhibition of 3-D Metastatic Phenotype and Experimental Melanoma by Zinc Oxide. Journal of Biomedical Nanotechnology, 2017, 13, 221-231.	1.1	15
74	Amphiphilic triblock copolymer based on poly(p-dioxanone) and poly(ethylene glycol): Synthesis, characterization, and aqueous dispersion. Journal of Applied Polymer Science, 2007, 103, 2695-2702.	2.6	14
75	In vitro evaluation of poly(caporlactone) grafted dextran (PGD) nanoparticles with cancer cell. Journal of Materials Science: Materials in Medicine, 2008, 19, 2157-2163.	3.6	14
76	Synthesis and characterization of a tumor-seeking LyP-1 peptide integrated lipid–polymer composite nanoparticle. Materials Advances, 2020, 1, 469-480.	5.4	14
77	Ceramic modification of N-acylated chitosan stabilized gold nanoparticles. Scripta Materialia, 2006, 54, 2029-2034.	5.2	13
78	Production of beads like hollow nickel oxide nanoparticles using colloidal -gel electrospinning methodology. Journal of Materials Science, 2008, 43, 860-864.	3.7	13
79	A review on nanoparticle-based technologies for biodetoxification. Drug and Chemical Toxicology, 2017, 40, 489-497.	2.3	13
80	Deposition of Gold Nanoparticles on Electrospun MgTiO ₃ Ceramic Nanofibers. Journal of Nanoscience and Nanotechnology, 2006, 6, 510-513.	0.9	12
81	Re-engineering a Liposome with Membranes of Red Blood Cells for Drug Delivery and Diagnostic Applications. ACS Applied Bio Materials, 2021, 4, 6974-6981.	4.6	11
82	lron(<scp>iii</scp>) chelated paramagnetic polymeric nanoparticle formulation as a next-generation <i>T</i> ₁ -weighted MRI contrast agent. RSC Advances, 2021, 11, 32216-32226.	3.6	10
83	Global Trends in Cancer Nanotechnology: A Qualitative Scientific Mapping Using Content-Based and Bibliometric Features for Machine Learning Text Classification. Cancers, 2021, 13, 4417.	3.7	10
84	Synthesis and characterization of amine-functionalized amphiphilic block copolymers based on poly(ethylene glycol) and poly(caprolactone). Polymer International, 2007, 56, 518-524.	3.1	9
85	Radical scavenger for the stabilization of gold nanoparticles. Materials Letters, 2007, 61, 4225-4230.	2.6	9
86	Biomimetic hydroxyapatite particulate nanofiber modified silicon: <i>In vitro</i> bioactivity. Journal of Biomedical Materials Research - Part A, 2009, 88A, 384-391.	4.0	7
87	Unique Boron Carbide Nanoparticle Nanobio Interface: Effects on Protein-RNA Interactions and 3-D Spheroid Metastatic Phenotype. Anticancer Research, 2016, 36, 2097-103.	1.1	7
88	Zn-based physiometacomposite nanoparticles: distribution, tolerance, imaging, andÂantiviral and anticancer activity. Nanomedicine, 2021, 16, 1857-1872.	3.3	6
89	Synthesis and characterization of brush copolymers based on methoxy poly(ethylene glycol) and poly(εâ€caprolactone). Journal of Applied Polymer Science, 2009, 111, 1540-1548.	2.6	5
90	Drug Delivery Nanoparticles with Locally Tunable Toxicity Made Entirely from a Light-Activatable Prodrug of Doxorubicin. Pharmaceutical Research, 2017, 34, 2025-2035.	3.5	5

#	Article	IF	CITATIONS
91	Amino/Amido Conjugates Form to Nanoscale Cobalt Physiometacomposite (PMC) Materials Functionally Delivering Nucleic Acid Therapeutic to Nucleus Enhancing Anticancer Activity via Ras-Targeted Protein Interference. ACS Applied Bio Materials, 2020, 3, 175-179.	4.6	5
92	Interaction of Immune System Protein with PEGylated and Un-PEGylated Polymeric Nanoparticles. Advances in Nanoparticles, 2017, 06, 103-113.	1.0	5
93	Measurement of Aluminum and Chemical Oxygen Demand in the Effluent of Mordanted Cotton Against Environmental Regulations. Clothing and Textiles Research Journal, 2021, 39, 206-215.	3.4	4
94	Reâ€engineered imaging agent using biomimetic approaches. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1762.	6.1	4
95	Biocompatible FePO4 Nanoparticles: Drug Delivery, RNA Stabilization, and Functional Activity. Nanoscale Research Letters, 2021, 16, 169.	5.7	3
96	Biogenic and biomimetic nanocarrier-based interventions: focus on intracellular infections. Nanomedicine, 2021, 16, 685-688.	3.3	2
97	Indocyanine-type Infrared-820 Encapsulated Polymeric Nanoparticle-Assisted Photothermal Therapy of Cancer. ACS Omega, 2022, 7, 12056-12065.	3.5	2
98	Real-time quantification of CD63 with anti-CD63 functionalized plasmonic fiber optic probe. , 2022, , .		1
99	Magnetic Nanoparticles: Hierarchically Structured Magnetic Nanoconstructs with Enhanced Relaxivity and Cooperative Tumor Accumulation (Adv. Funct. Mater. 29/2014). Advanced Functional Materials, 2014, 24, 4562-4562.	14.9	0