Laurence G Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selenate Reduction to Elemental Selenium by Anaerobic Bacteria in Sediments and Culture: Biogeochemical Significance of a Novel, Sulfate-Independent Respiration. Applied and Environmental Microbiology, 1989, 55, 2333-2343.	3.1	326
2	Metabolism of Reduced Methylated Sulfur Compounds in Anaerobic Sediments and by a Pure Culture of an Estuarine Methanogen. Applied and Environmental Microbiology, 1986, 52, 1037-1045.	3.1	238
3	Isolation, Growth, and Metabolism of an Obligately Anaerobic, Selenate-Respiring Bacterium, Strain SES-3. Applied and Environmental Microbiology, 1994, 60, 3011-3019.	3.1	215
4	Arsenic(III) Fuels Anoxygenic Photosynthesis in Hot Spring Biofilms from Mono Lake, California. Science, 2008, 321, 967-970.	12.6	214
5	A Microbial Arsenic Cycle in a Salt-Saturated, Extreme Environment. Science, 2005, 308, 1305-1308.	12.6	158
6	Benthic fluxes in San Francisco Bay. Hydrobiologia, 1985, 129, 69-90.	2.0	152
7	Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochimica Et Cosmochimica Acta, 2000, 64, 3073-3084.	3.9	147
8	Sources and flux of natural gases from Mono Lake, California. Geochimica Et Cosmochimica Acta, 1987, 51, 2915-2929.	3.9	144
9	Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environmental Science & Technology, 1990, 24, 1157-1164.	10.0	142
10	Dissimilatory Arsenate and Sulfate Reduction in Sediments of Two Hypersaline, Arsenic-Rich Soda Lakes: Mono and Searles Lakes, California. Applied and Environmental Microbiology, 2006, 72, 6514-6526.	3.1	115
11	Oxidation of ammonia and methane in an alkaline, saline lake. Limnology and Oceanography, 1999, 44, 178-188.	3.1	110
12	Microbiological Reduction of Sb(V) in Anoxic Freshwater Sediments. Environmental Science & Technology, 2014, 48, 218-226.	10.0	108
13	Microbiological Oxidation of Antimony(III) with Oxygen or Nitrate by Bacteria Isolated from Contaminated Mine Sediments. Applied and Environmental Microbiology, 2015, 81, 8478-8488.	3.1	93
14	Distribution, production, and ecophysiology of <i>Picocystis</i> strain ML in Mono Lake, California. Limnology and Oceanography, 2002, 47, 440-452.	3.1	87
15	Degradation of methyl bromide and methyl chloride in soil microcosms: Use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms. Geochimica Et Cosmochimica Acta, 2004, 68, 3271-3283.	3.9	87
16	In situ bacterial selenate reduction in the agricultural drainage systems of western Nevada. Applied and Environmental Microbiology, 1991, 57, 615-617.	3.1	82
17	Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the carson river, nevada. Applied and Environmental Microbiology, 1995, 61, 2745-2753.	3.1	81
18	Degradation of Methyl Bromide in Anaerobic Sediments. Environmental Science & Technology, 1994, 28, 514-520.	10.0	80

LAURENCE G MILLER

#	Article	IF	CITATIONS
19	Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes. Limnology and Oceanography, 1993, 38, 1020-1039.	3.1	71
20	Large carbon isotope fractionation associated with oxidation of methyl halides by methylotrophic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5833-5837.	7.1	70
21	Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils. Applied and Environmental Microbiology, 1994, 60, 3640-3646.	3.1	69
22	Bacterial oxidation of methyl bromide in fumigated agricultural soils. Applied and Environmental Microbiology, 1997, 63, 4346-4354.	3.1	68
23	Selective Inhibition of Ammonium Oxidation and Nitrification-Linked N ₂ O Formation by Methyl Fluoride and Dimethyl Ether. Applied and Environmental Microbiology, 1993, 59, 2457-2464.	3.1	60
24	Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California. Extremophiles, 2012, 16, 727-742.	2.3	48
25	Aminobacter ciceronei sp. nov. and Aminobacter lissarensis sp. nov., isolated from various terrestrial environments. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1827-1832.	1.7	46
26	Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1156-1174.	3.0	46
27	Meromixis in hypersaline Mono Lake, California. 3. Biogeochemical response to stratification and overturn. Limnology and Oceanography, 1993, 38, 1040-1051.	3.1	45
28	The geochemistry of methane in Lake Fryxell, an amictic, permanently ice-covered, antarctic lake. Biogeochemistry, 1993, 21, 95-115.	3.5	40
29	Methane efflux from the pelagic regions of four lakes. Global Biogeochemical Cycles, 1988, 2, 269-277.	4.9	39
30	Effects of glacial meltwater inflows and moat freezing on mixing in an ice-covered antarctic lake as interpreted from stable isotope and tritium distributions. Limnology and Oceanography, 1996, 41, 966-976.	3.1	37
31	The genetic basis of anoxygenic photosynthetic arsenite oxidation. Environmental Microbiology, 2017, 19, 130-141.	3.8	37
32	Aspects of the Biogeochemistry of Methane in Mono Lake and the Mono Basin of California. , 1993, , 704-741.		33
33	Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes. Extremophiles, 2008, 12, 837-848.	2.3	32
34	Bacterial Cycling of Methyl Halides. Advances in Applied Microbiology, 2007, 61, 307-346.	2.4	30
35	Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatán, Mexico. Biogeosciences, 2016, 13, 2981-3001.	3.3	29
36	Continuous flow stable isotope methods for study of ?13C fractionation during halomethane production and degradation. Rapid Communications in Mass Spectrometry, 2001, 15, 357-363.	1.5	28

LAURENCE G MILLER

#	Article	IF	CITATIONS
37	A Biogeochemical and Genetic Survey of Acetylene Fermentation by Environmental Samples and Bacterial Isolates. Geomicrobiology Journal, 2013, 30, 501-516.	2.0	26
38	Bacterial Oxidation of Methyl Bromide in Mono Lake, California. Environmental Science & Technology, 1997, 31, 1489-1495.	10.0	22
39	Arsenolipids in Cultured Picocystis Strain ML and Their Occurrence in Biota and Sediment from Mono Lake, California. Life, 2020, 10, 93.	2.4	20
40	Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment. Microorganisms, 2015, 3, 290-309.	3.6	19
41	Fallout plutonium in two oxic-anoxic environments1. Limnology and Oceanography, 1986, 31, 1110-1121.	3.1	18
42	Metabolic Capability and Phylogenetic Diversity of Mono Lake during a Bloom of the Eukaryotic Phototroph Picocystis sp. Strain ML. Applied and Environmental Microbiology, 2018, 84, .	3.1	18
43	Methane oxidation linked to chlorite dismutation. Frontiers in Microbiology, 2014, 5, 275.	3.5	15
44	Microbial succession and dynamics in meromictic Mono Lake, California. Geobiology, 2021, 19, 376-393.	2.4	15
45	Acetylenotrophy: a hidden but ubiquitous microbial metabolism?. FEMS Microbiology Ecology, 2018, 94,	2.7	14
46	Carbon isotope fractionation of methyl bromideduring agricultural soil fumigations. Biogeochemistry, 2002, 60, 181-190.	3.5	12
47	Stable Carbon Isotope Fractionation during Bacterial Acetylene Fermentation: Potential for Life Detection in Hydrocarbon-Rich Volatiles of Icy Planet(oid)s. Astrobiology, 2015, 15, 977-986.	3.0	11
48	Genome Sequence of the Photoarsenotrophic Bacterium <i>Ectothiorhodospira</i> sp. Strain BSL-9, Isolated from a Hypersaline Alkaline Arsenic-Rich Extreme Environment. Genome Announcements, 2016, 4, .	0.8	9
49	A Microbial Arsenic Cycle in Sediments of an Acidic Mine Impoundment: Herman Pit, Clear Lake, California. Geomicrobiology Journal, 2016, 33, 677-689.	2.0	9
50	Laboratory Determination of the Carbon Kinetic Isotope Effects (KIEs) for Reactions of Methyl Halides with Various Nucleophiles in Solution. Journal of Atmospheric Chemistry, 2005, 52, 203-219.	3.2	8
51	Bioreactors for Removing Methyl Bromide following Contained Fumigations. Environmental Science & Technology, 2003, 37, 1698-1704.	10.0	7