
## Sachin Shanbhag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131514/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Phenomenological model of viscoelasticity for systems undergoing sol–gel transition. Physics of Fluids, 2021, 33, .                                                                         | 4.0 | 14        |
| 2  | Unentangled Vitrimer Melts: Interplay between Chain Relaxation and Cross-link Exchange Controls<br>Linear Rheology. Macromolecules, 2021, 54, 3304-3320.                                    | 4.8 | 59        |
| 3  | Probing nonmonotonic variation of terminal relaxation in star-linear blends with a fast slip link model. Journal of Rheology, 2021, 65, 943-957.                                            | 2.6 | 2         |
| 4  | Spectral method for time-strain separable integral constitutive models in oscillatory shear. Physics of Fluids, 2021, 33, .                                                                 | 4.0 | 7         |
| 5  | Stable and contactâ€free time stepping for dense rigid particle suspensions. International Journal for<br>Numerical Methods in Fluids, 2020, 92, 94-113.                                    | 1.6 | 4         |
| 6  | Analysis of linear viscoelasticity of aging soft glasses. Journal of Rheology, 2020, 64, 1197-1207.                                                                                         | 2.6 | 10        |
| 7  | Molecular Simulation of Tracer Diffusion and Self-Diffusion in Entangled Polymers. Macromolecules, 2020, 53, 4649-4658.                                                                     | 4.8 | 3         |
| 8  | How Many Monodisperse Fractions are Required to Discretize Polydisperse Polymers?.<br>Macromolecular Theory and Simulations, 2020, 29, 2000020.                                             | 1.4 | 4         |
| 9  | Relaxation spectra using nonlinear Tikhonov regularization with a Bayesian criterion. Rheologica<br>Acta, 2020, 59, 509-520.                                                                | 2.4 | 16        |
| 10 | Repulsion of Polar Gels From Water: Hydrationâ€īriggered Actuation, Selfâ€Folding, and 3D Fabrication.<br>Advanced Materials Interfaces, 2020, 7, 2000509.                                  | 3.7 | 3         |
| 11 | Temporal Coarse-Graining in a Slip Link Model for Polydisperse Polymer Melts. Frontiers in Physics,<br>2020, 8, .                                                                           | 2.1 | 1         |
| 12 | Mathematical foundations of an ultra coarse-grained slip link model. Journal of Chemical Physics, 2019, 151, 044903.                                                                        | 3.0 | 7         |
| 13 | Fast Slip Link Model for Bidisperse Linear Polymer Melts. Macromolecules, 2019, 52, 3092-3103.                                                                                              | 4.8 | 14        |
| 14 | pyReSpect: A Computer Program to Extract Discrete and Continuous Spectra from Stress Relaxation<br>Experiments. Macromolecular Theory and Simulations, 2019, 28, 1900005.                   | 1.4 | 25        |
| 15 | Reliable estimates of error in self-diffusivity from molecular simulations using statistical bootstrap.<br>Journal of Computational Methods in Sciences and Engineering, 2019, 19, 387-405. | 0.2 | 0         |
| 16 | Unusual dynamics of ring probes in linear matrices. Journal of Polymer Science, Part B: Polymer<br>Physics, 2017, 55, 169-177.                                                              | 2.1 | 16        |
| 17 | The electroneutrality constraint in nonlocal models. Journal of Chemical Physics, 2017, 147, 124102.                                                                                        | 3.0 | 5         |
| 18 | What Happens When Threading is Suppressed in Blends of Ring and Linear Polymers?. Polymers, 2016, 8,<br>409.                                                                                | 4.5 | 9         |

SACHIN SHANBHAG

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Estimating self-diffusion in polymer melts: how long is a long enough molecular simulation?.<br>Molecular Simulation, 2016, 42, 162-172.                                        | 2.0 | 6         |
| 20 | Size of a polymer chain in an environment of quenched chains. Journal of Polymer Science, Part B:<br>Polymer Physics, 2015, 53, 1611-1619.                                      | 2.1 | 1         |
| 21 | Micromechanics predictions for two-phased nanocomposites and three-phased multiscale composites:<br>A review. Journal of Reinforced Plastics and Composites, 2015, 34, 605-623. | 3.1 | 12        |
| 22 | Inferring Comonomer Content Using Crystaf: Uncertainty Analysis. Macromolecular Theory and Simulations, 2014, 23, 464-472.                                                      | 1.4 | 0         |
| 23 | Self-diffusion in asymmetric ring-linear blends. Reactive and Functional Polymers, 2014, 80, 57-60.                                                                             | 4.1 | 17        |
| 24 | Self-entanglement of a single polymer chain confined in a cubic box. Journal of Polymer Science, Part<br>B: Polymer Physics, 2014, 52, 1283-1290.                               | 2.1 | 5         |
| 25 | Mesh sensitivity in peridynamic simulations. Computer Physics Communications, 2014, 185, 181-193.                                                                               | 7.5 | 65        |
| 26 | Extraction of self-diffusivity in systems with nondiffusive short-time behavior. Physical Review E, 2013, 88, 042816.                                                           | 2.1 | 10        |
| 27 | Inference of polymer structure by simultaneous analysis of chromatographic and rheological measurements. Rheologica Acta, 2013, 52, 973-988.                                    | 2.4 | 1         |
| 28 | Analytical Rheology of Polymer Melts: State of the Art. ISRN Materials Science, 2012, 2012, 1-24.                                                                               | 1.0 | 17        |
| 29 | Complex effects of molecular topology on diffusion in entangled biopolymer blends. Soft Matter, 2012, 8, 9177.                                                                  | 2.7 | 50        |
| 30 | Superensembles of linear viscoelastic models of polymer melts. Journal of Rheology, 2012, 56, 279-303.                                                                          | 2.6 | 5         |
| 31 | Analytical Rheology of Metallocene-Catalyzed Polyethylenes. Macromolecules, 2011, 44, 3656-3665.                                                                                | 4.8 | 23        |
| 32 | Analytical rheology of branched polymer melts: Identifying and resolving degenerate structures.<br>Journal of Rheology, 2011, 55, 177-194.                                      | 2.6 | 13        |
| 33 | Percolation of Trace Amounts of Linear Polymers in Melts of Cyclic Polymers. Macromolecular<br>Theory and Simulations, 2011, 20, 205-211.                                       | 1.4 | 14        |
| 34 | Analytical rheology of blends of linear and star polymers using a Bayesian formulation. Rheologica<br>Acta, 2010, 49, 411-422.                                                  | 2.4 | 15        |
| 35 | Conformational free energy of melts of ring-linear polymer blends. Physical Review E, 2009, 80, 041806.                                                                         | 2.1 | 14        |
| 36 | On the thermodynamic driving force for nucleation at large undercoolings. Polymer, 2008, 49, 2515-2519.                                                                         | 3.8 | 3         |

SACHIN SHANBHAG

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Selfâ€diffusion coefficient of ring polymers in semidilute solution. Journal of Polymer Science, Part B:<br>Polymer Physics, 2008, 46, 2370-2379.                                                                                       | 2.1  | 20        |
| 38 | A Temperatureâ€Driven Reversible Phase Transfer of 2â€(Diethylamino)ethanethiol‣tabilized CdTe<br>Nanoparticles. Angewandte Chemie - International Edition, 2008, 47, 9875-9878.                                                        | 13.8 | 52        |
| 39 | Self-Diffusion in Binary Blends of Cyclic and Linear Polymers. Macromolecules, 2008, 41, 7239-7242.                                                                                                                                     | 4.8  | 52        |
| 40 | On the relationship between two popular lattice models for polymer melts. Journal of Chemical Physics, 2008, 129, 144904.                                                                                                               | 3.0  | 17        |
| 41 | Conformational properties of blends of cyclic and linear polymer melts. Physical Review E, 2008, 77, 011801.                                                                                                                            | 2.1  | 54        |
| 42 | Implications of microscopic simulations of polymer melts for mean-field tube theories. Molecular Physics, 2007, 105, 249-260.                                                                                                           | 1.7  | 11        |
| 43 | Primitive Path Networks Generated by Annealing and Geometrical Methods:Â Insights into Differences.<br>Macromolecules, 2007, 40, 2897-2903.                                                                                             | 4.8  | 188       |
| 44 | What Is the Size of a Ring Polymer in a Ringâ^'Linear Blend?. Macromolecules, 2007, 40, 5995-6000.                                                                                                                                      | 4.8  | 65        |
| 45 | Self-Organization of Te Nanorods into V-Shaped Assemblies: A Brownian Dynamics Study and Experimental Insights. ACS Nano, 2007, 1, 126-132.                                                                                             | 14.6 | 20        |
| 46 | Advances in modeling of polymer melt rheology. AICHE Journal, 2007, 53, 542-548.                                                                                                                                                        | 3.6  | 36        |
| 47 | Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures.<br>Journal of Materials Chemistry, 2006, 16, 3558.                                                                                         | 6.7  | 74        |
| 48 | Spontaneous CdTe → Alloy → CdS Transition of Stabilizer-Depleted CdTe Nanoparticles Induced by EDTA.<br>Journal of the American Chemical Society, 2006, 128, 7036-7042.                                                                 | 13.7 | 42        |
| 49 | On the Origin of a Permanent Dipole Moment in Nanocrystals with a Cubic Crystal Lattice:Â Effects of<br>Truncation, Stabilizers, and Medium for CdS Tetrahedral Homologues. Journal of Physical Chemistry<br>B, 2006, 110, 12211-12217. | 2.6  | 83        |
| 50 | Spontaneous Transformation of CdTe Nanoparticles into Angled Te Nanocrystals:Â From Particles and<br>Rods to Checkmarks, X-Marks, and Other Unusual Shapes. Journal of the American Chemical Society,<br>2006, 128, 6730-6736.          | 13.7 | 89        |
| 51 | Identification of Topological Constraints in Entangled Polymer Melts Using the Bond-Fluctuation Model. Macromolecules, 2006, 39, 2413-2417.                                                                                             | 4.8  | 62        |
| 52 | Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry.<br>Biomaterials, 2005, 26, 5581-5585.                                                                                                      | 11.4 | 46        |
| 53 | A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching. Rheologica Acta, 2005, 44, 319-330.                                                                              | 2.4  | 103       |
| 54 | Cell Distribution Profiles in Three-Dimensional Scaffolds with Inverted-Colloidal-Crystal Geometry:<br>Modeling and Experimental Investigations. Small, 2005, 1, 1208-1214.                                                             | 10.0 | 27        |

SACHIN SHANBHAG

| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Chain Retraction Potential in a Fixed Entanglement Network. Physical Review Letters, 2005, 94, 076001.                                                         | 7.8 | 85        |
| 56 | Cell Scaffolds with Three-Dimensional Order: The Role of Modelling in Establishing Design Guidelines.<br>Australian Journal of Chemistry, 2005, 58, 713.       | 0.9 | 2         |
| 57 | Subsurface colloids in groundwater contamination: a mathematical model. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2004, 232, 29-38. | 4.7 | 25        |