Akmaral Seitkhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131431/publications.pdf Version: 2024-02-01

		393982	454577
30	2,139	19	30
papers	citations	h-index	g-index
31	31	31	2536
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Lowâ€Power CuSCN Hydrogen Sensor Operating Reversibly at Room Temperature. Advanced Functional Materials, 2022, 32, 2102635.	7.8	8
2	A Triâ€Channel Oxide Transistor Concept for the Rapid Detection of Biomolecules Including the SARSâ€CoVâ€2 Spike Protein. Advanced Materials, 2022, 34, e2104608.	11.1	19
3	Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science, 2022, 376, 73-77.	6.0	366
4	Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgF <i>_x </i> . Science, 2022, 377, 302-306.	6.0	141
5	Rapid and up-scalable manufacturing of gigahertz nanogap diodes. Nature Communications, 2022, 13, .	5.8	11
6	Lithiumâ€lon Desolvation Induced by Nitrate Additives Reveals New Insights into High Performance Lithium Batteries. Advanced Functional Materials, 2021, 31, 2101593.	7.8	100
7	Efficient Hybrid Amorphous Silicon/Organic Tandem Solar Cells Enabled by Nearâ€Infrared Absorbing Nonfullerene Acceptors. Advanced Energy Materials, 2021, 11, 2100166.	10.2	5
8	A universal solution processed interfacial bilayer enabling ohmic contact in organic and hybrid optoelectronic devices. Energy and Environmental Science, 2020, 13, 268-276.	15.6	40
9	Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells. Journal of Materials Chemistry A, 2020, 8, 1164-1175.	5.2	39
10	Colossal Tunneling Electroresistance in Coâ€Planar Polymer Ferroelectric Tunnel Junctions. Advanced Electronic Materials, 2020, 6, 1901091.	2.6	14
11	100 GHz zinc oxide Schottky diodes processed from solution on a wafer scale. Nature Electronics, 2020, 3, 718-725.	13.1	45
12	Long-range exciton diffusion in molecular non-fullerene acceptors. Nature Communications, 2020, 11, 5220.	5.8	204
13	A Multilayered Electron Extracting System for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2004273.	7.8	17
14	Lowâ€Voltage Heterojunction Metal Oxide Transistors via Rapid Photonic Processing. Advanced Electronic Materials, 2020, 6, 2000028.	2.6	25
15	Colloidal Quantum Dot Photovoltaics Using Ultrathin, Solution-Processed Bilayer In ₂ 0 ₃ /ZnO Electron Transport Layers with Improved Stability. ACS Applied Energy Materials, 2020, 3, 5135-5141.	2.5	13
16	17.1% Efficient Singleâ€Junction Organic Solar Cells Enabled by nâ€Type Doping of the Bulkâ€Heterojunction. Advanced Science, 2020, 7, 1903419.	5.6	173
17	17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS ₂ as a Replacement for PEDOT:PSS. Advanced Materials, 2019, 31, e1902965.	11.1	500
18	Enhancing the Charge Extraction and Stability of Perovskite Solar Cells Using Strontium Titanate (SrTiO ₃) Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 8090-8097.	2.5	51

#	Article	IF	CITATIONS
19	Use of the Phenâ€NaDPO:Sn(SCN) ₂ Blend as Electron Transport Layer Results to Consistent Efficiency Improvements in Organic and Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905810.	7.8	41
20	Lightâ€Emitting Transistors Based on Solutionâ€Processed Heterostructures of Selfâ€Organized Multipleâ€Quantumâ€Well Perovskite and Metalâ€Oxide Semiconductors. Advanced Electronic Materials, 2019, 5, 1800985.	2.6	18
21	Hybrid organic–metal oxide multilayer channel transistors with high operational stability. Nature Electronics, 2019, 2, 587-595.	13.1	49
22	Charge and Triplet Exciton Generation in Neat PC ₇₀ BM Films and Hybrid CuSCN:PC ₇₀ BM Solar Cells. Advanced Energy Materials, 2019, 9, 1802476.	10.2	20
23	F-Substituted oligothiophenes serve as nonfullerene acceptors in polymer solar cells with open-circuit voltages >1 V. Journal of Materials Chemistry A, 2018, 6, 9368-9372.	5.2	21
24	Highâ€Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCNâ€Nanowire Heterointerface. Advanced Science, 2018, 5, 1700980.	5.6	19
25	Additiveâ€Morphology Interplay and Loss Channels in "Allâ€Smallâ€Molecule―Bulkâ€heterojunction (BHJ) Solar Cells with the Nonfullerene Acceptor IDTTBM. Advanced Functional Materials, 2018, 28, 1705464.	7.8	40
26	Charge Photogeneration and Recombination in Mesostructured CuSCNâ€Nanowire/PC ₇₀ BM Solar Cells. Solar Rrl, 2018, 2, 1800095.	3.1	9
27	Solutionâ€Processed In ₂ O ₃ /ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantumâ€Dot Solar Cells. Solar Rrl, 2018, 2, 1800076.	3.1	34
28	Large-area plastic nanogap electronics enabled by adhesion lithography. Npj Flexible Electronics, 2018, 2, .	5.1	29
29	pâ€Doping of Copper(I) Thiocyanate (CuSCN) Holeâ€Transport Layers for Highâ€Performance Transistors and Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802055.	7.8	50
30	Sub-second photonic processing of solution-deposited single layer and heterojunction metal oxide thin-film transistors using a high-power xenon flash lamp. Journal of Materials Chemistry C, 2017, 5, 11724-11732.	2.7	37