Mahmoud Wagih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131182/publications.pdf

Version: 2024-02-01

471371 526166 57 881 17 27 citations h-index g-index papers 72 72 72 466 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Millimeter-Wave Power Transmission for Compact and Large-Area Wearable IoT Devices Based on a Higher Order Mode Wearable Antenna. IEEE Internet of Things Journal, 2022, 9, 5229-5239.	5.5	15
2	Textile-based triboelectric nanogenerator with alternating positive and negative freestanding woven structure for harvesting sliding energy in all directions. Nano Energy, 2022, 92, 106739.	8.2	36
3	Screen-Printable Flexible Textile-Based Ultra-Broadband Millimeter-Wave DC-Blocking Transmission Lines Based on Microstrip-Embedded Printed Capacitors. IEEE Journal of Microwaves, 2022, 2, 162-173.	4.9	17
4	Broadband Low-Loss On-Body UHF to Millimeter-Wave Surface Wave Links Using Flexible Textile Single Wire Transmission Lines. IEEE Open Journal of Antennas and Propagation, 2022, 3, 101-111.	2.5	10
5	Design of Textile Antenna for Moisture Sensing. , 2022, 15, .		4
6	Textile Tactile Senor Based on Ferroelectret for Gesture Recognition. , 2022, 15, .		0
7	5G-Enabled E-Textiles Based on a Low-Profile Millimeter-Wave Textile Antenna. , 2022, 15, .		O
8	Broadband Compact Substrate-Independent Textile Wearable Antenna for Simultaneous Near- and Far-Field Wireless Power Transmission. IEEE Open Journal of Antennas and Propagation, 2022, 3, 398-411.	2.5	13
9	E-Textile Breathing Sensor Using Fully Textile Wearable Antennas. , 2022, 15, .		5
10	Towards Improved IoT LoRa-WAN Connectivity using Broadband Omnidirectional Antennas., 2022,,.		1
11	Printed Non-Metallic Textile-Based Carbon Antenna for Low-Cost Green Wearable Applications. , 2022, ,		4
12	Meshed Microstrip Printed Antenna for Matching Network-Free RF Energy Harvesting. , 2022, , .		0
13	Textile Manufacturing Compatible Triboelectric Nanogenerator with Alternating Positive and Negative Woven Structure. , 2022, 15, .		O
14	Toward the Optimal Antenna-Based Wireless Sensing Strategy: An Ice Sensing Case Study. IEEE Open Journal of Antennas and Propagation, 2022, 3, 687-699.	2.5	4
15	Highly Conductive Flexible Printed PEDOT:PSS films for Green Humidity Sensing Applications. , 2022, , .		1
16	Phase-Accurate Analytical Transmission Line Model and for a 1–50 GHz Millimeter-Wave Textile-Based Wearable Goubau Single Wire Transmission Line (SWTL). , 2022, , .		0
17	Battery-Free Wireless Light-Sensing Tag Based on a Long-Range Dual-Port Dual-Polarized RFID Platform. Sensors, 2022, 22, 4782.	2.1	3
18	Omnidirectional Dual-Polarized Low-Profile Textile Rectenna With Over 50% Efficiency for Sub- $\langle i \rangle \hat{l} \frac{1}{4} \langle i \rangle W/cm \langle sup \rangle 2 \langle sup \rangle$ Wearable Power Harvesting. IEEE Transactions on Antennas and Propagation, 2021, 69, 2522-2536.	3.1	45

#	Article	IF	CITATIONS
19	E-Textile Technology Review–From Materials to Application. IEEE Access, 2021, 9, 97152-97179.	2.6	40
20	Powering E-Textiles Using a Single Thread Radio Frequency Energy Harvesting Rectenna. Proceedings (mdpi), 2021, 68, 16.	0.2	1
21	Comments on "A Passive and Wireless Sensor Based on RFID Antenna for Detecting Mechanical Deformation― IEEE Open Journal of Antennas and Propagation, 2021, 2, 870-870.	2.5	1
22	Dual-Polarized Wearable Antenna/Rectenna for Full-Duplex and MIMO Simultaneous Wireless Information and Power Transfer (SWIPT). IEEE Open Journal of Antennas and Propagation, 2021, 2, 844-857.	2.5	29
23	Analyzing and Maximizing the Power Harvesting Efficiency of a Textile Rectenna Through Reflector-Based Shielding., 2021,,.		1
24	2.4 GHz Wearable Textile Antenna/Rectenna for Simultaneous Information and Power Transfer. , 2021, , .		5
25	Dispenser Printed Flexible Rectenna for Dual-ISM Band High-Efficiency Supercapacitor Charging. , 2021, , .		4
26	Flexible Direct-Write Printed RF Sensor for RF Ice Sensing., 2021,,.		1
27	Wireless Ice Detection and Monitoring Using Flexible UHF RFID Tags. IEEE Sensors Journal, 2021, 21, 18715-18724.	2.4	24
28	Dual-Band Dual-Mode Textile Antenna/Rectenna for Simultaneous Wireless Information and Power Transfer (SWIPT). IEEE Transactions on Antennas and Propagation, 2021, 69, 6322-6332.	3.1	52
29	RF-Powered Wearable Energy Harvesting and Storage Module Based on E-Textile Coplanar Waveguide Rectenna and Supercapacitor. IEEE Open Journal of Antennas and Propagation, 2021, 2, 302-314.	2.5	37
30	Direct-Written Printed Dual-Polarized Meshed Antenna for Chipless RFID Sensing. , 2021, , .		1
31	Millimeter-Wave Textile-Based Monopole Antenna for Wearable Wireless Power Transmission., 2021,,.		2
32	CMOS UHF RFID Rectifier Design and Matching: an Analysis of Process and Temperature Variations. , 2021, , .		3
33	Open-Source Low-Cost Antenna Measurement Setup for Rapid Echoic Measurements., 2021,,.		1
34	E-Textile RF Energy Harvesting and Storage using Organic-Electrolyte Carbon-Based Supercapacitors. , 2021, , .		0
35	Screen Printing Reliable Wearable Microstrip Antennas on Rough Textile Substrates. , 2021, , .		1
36	Complex-Impedance Dipole Antennas as RFID-Enabled Ice Monitors. , 2021, , .		1

3

#	Article	IF	Citations
37	Textile-based Radio Frequency Energy Harvesting and Storage using Ultra-Compact Rectennas with High Effective-to-Physical Area Ratio. , $2021, \ldots$		1
38	Textile Manufacturing Compatible Triboelectric Nanogenerator with Alternating Positive and Negative Freestanding Grating Structure. Proceedings (mdpi), 2020, 32, .	0.2	0
39	Millimeter-Wave Power Harvesting: A Review. IEEE Open Journal of Antennas and Propagation, 2020, 1, 560-578.	2.5	43
40	Real-World Performance of Sub-1 GHz and 2.4 GHz Textile Antennas for RF-Powered Body Area Networks. IEEE Access, 2020, 8, 133746-133756.	2.6	21
41	High-Efficiency Sub-1 GHz Flexible Compact Rectenna based on Parametric Antenna-Rectifier Co-Design. , 2020, , .		16
42	Rectennas for Radio-Frequency Energy Harvesting and Wireless Power Transfer: A Review of Antenna Design [Antenna Applications Corner]. IEEE Antennas and Propagation Magazine, 2020, 62, 95-107.	1.2	68
43	Broadband Millimeter-Wave Textile-Based Flexible Rectenna for Wearable Energy Harvesting. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4960-4972.	2.9	74
44	Sub-1 GHz Flexible Concealed Rectenna Yarn for High-Efficiency Wireless-Powered Electronic Textiles. , 2020, , .		7
45	Meshed High-Impedance Matching Network-Free Rectenna Optimized for Additive Manufacturing. IEEE Open Journal of Antennas and Propagation, 2020, 1, 615-626.	2.5	28
46	Reliable UHF Long-Range Textile-Integrated RFID Tag Based on a Compact Flexible Antenna Filament. Sensors, 2020, 20, 3435.	2.1	38
47	Dual-Receiver Wearable 6.78 MHz Resonant Inductive Wireless Power Transfer Glove Using Embroidered Textile Coils. IEEE Access, 2020, 8, 24630-24642.	2.6	42
48	Separation-Independent Wearable 6.78 MHz Near-Field Radiative Wireless Power Transfer using Electrically Small Embroidered Textile Coils. Energies, 2020, 13, 528.	1.6	5
49	Wearable Wireless Power Transfer using Direct-Write Dispenser Printed Flexible Coils. , 2020, , .		10
50	Direct-Write Dispenser Printing for Rapid Antenna Prototyping on Thin Flexible Substrates. , 2020, , .		12
51	Wearable E-Textile Wireless RF Power Supply based on a Textile Supercapacitor and a Flexible Rectenna Filament. , 2020, , .		4
52	Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy, 2019, 66, 104148.	8.2	66
53	Overcoming the Efficiency Barrier of Textile Antennas: A Transmission Lines Approach. Proceedings (mdpi), 2019, 32, .	0.2	5
54	A Smart Cycling Platform for Textile-Based Sensing and Wireless Power Transfer in Smart Cities. Proceedings (mdpi), 2019, 32, .	0.2	5

#	Article	IF	CITATION
55	Millimeter-Wave Textile Antenna for on-Body RF Energy Harvesting in Future 5G Networks. , 2019, , .		35
56	Flexible 2.4 GHz Node for Body Area Networks With a Compact High-Gain Planar Antenna. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 49-53.	2.4	33
57	Analysis and design of low loss differential transmission line structures for high speed applications. , 2017, , .		3