
## Banavoth Murali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6131081/publications.pdf Version: 2024-02-01



RANAVOTH MURALL

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications, 2015, 6, 7586.                                                                                                       | 5.8  | 1,478     |
| 2  | Highly Efficient Perovskiteâ€Quantumâ€Dot Lightâ€Emitting Diodes by Surface Engineering. Advanced<br>Materials, 2016, 28, 8718-8725.                                                                                                                   | 11.1 | 917       |
| 3  | Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length. ACS Energy Letters, 2016, 1, 32-37.                                                                                                       | 8.8  | 752       |
| 4  | CH <sub>3</sub> NH <sub>3</sub> PbCl <sub>3</sub> Single Crystals: Inverse Temperature<br>Crystallization and Visible-Blind UV-Photodetector. Journal of Physical Chemistry Letters, 2015, 6,<br>3781-3786.                                            | 2.1  | 636       |
| 5  | Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and<br>Two-Photon-Induced Amplified Spontaneous Emission. Journal of Physical Chemistry Letters, 2015, 6,<br>5027-5033.                                                | 2.1  | 466       |
| 6  | Engineering Interfacial Charge Transfer in CsPbBr <sub>3</sub> Perovskite Nanocrystals by<br>Heterovalent Doping. Journal of the American Chemical Society, 2017, 139, 731-737.                                                                        | 6.6  | 406       |
| 7  | Inorganic Lead Halide Perovskite Single Crystals: Phaseâ€Selective Lowâ€Temperature Growth, Carrier<br>Transport Properties, and Selfâ€Powered Photodetection. Advanced Optical Materials, 2017, 5, 1600704.                                           | 3.6  | 362       |
| 8  | Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals. Journal of Physical Chemistry Letters, 2016, 7, 295-301.                                                                                                    | 2.1  | 332       |
| 9  | Zero-Dimensional Cs <sub>4</sub> PbBr <sub>6</sub> Perovskite Nanocrystals. Journal of Physical<br>Chemistry Letters, 2017, 8, 961-965.                                                                                                                | 2.1  | 299       |
| 10 | Solutionâ€Grown Monocrystalline Hybrid Perovskite Films for Holeâ€Transporterâ€Free Solar Cells.<br>Advanced Materials, 2016, 28, 3383-3390.                                                                                                           | 11.1 | 298       |
| 11 | Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals. Nano Letters, 2017, 17, 4759-4767.                                                                                                                                          | 4.5  | 251       |
| 12 | Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films.<br>Nature Communications, 2016, 7, 13407.                                                                                                             | 5.8  | 170       |
| 13 | Engineering of CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> Perovskite Crystals by Alloying Large<br>Organic Cations for Enhanced Thermal Stability and Transport Properties. Angewandte Chemie -<br>International Edition, 2016, 55, 10686-10690. | 7.2  | 152       |
| 14 | Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor<br>(CH <sub>3</sub> NH <sub>3</sub> ) <sub>3</sub> Bi <sub>2</sub> I <sub>9</sub> . Journal of Materials<br>Chemistry A, 2016, 4, 12504-12515.                 | 5.2  | 151       |
| 15 | Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and<br>Hybrid Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 11828-11836.                                                                | 4.0  | 145       |
| 16 | Surface Restructuring of Hybrid Perovskite Crystals. ACS Energy Letters, 2016, 1, 1119-1126.                                                                                                                                                           | 8.8  | 140       |
| 17 | Lead-free perovskite solar cells enabled by hetero-valent substitutes. Energy and Environmental<br>Science, 2020, 13, 2363-2385.                                                                                                                       | 15.6 | 109       |
| 18 | Recent progress and growth in biosensors technology: A critical review. Journal of Industrial and Engineering Chemistry, 2022, 109, 21-51.                                                                                                             | 2.9  | 94        |

BANAVOTH MURALI

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Surface of Hybrid Perovskite Crystals: A Boon or Bane. ACS Energy Letters, 2017, 2, 846-856.                                                                                                                                | 8.8 | 91        |
| 20 | Single Crystals: The Next Big Wave of Perovskite Optoelectronics. , 2020, 2, 184-214.                                                                                                                                           |     | 89        |
| 21 | Double Charged Surface Layers in Lead Halide Perovskite Crystals. Nano Letters, 2017, 17, 2021-2027.                                                                                                                            | 4.5 | 60        |
| 22 | Robust and air-stable sandwiched organo-lead halide perovskites for photodetector applications.<br>Journal of Materials Chemistry C, 2016, 4, 2545-2552.                                                                        | 2.7 | 53        |
| 23 | Deciphering the Ultrafast Nonlinear Optical Properties and Dynamics of Pristine and Ni-Doped<br>CsPbBr <sub>3</sub> Colloidal Two-Dimensional Nanocrystals. Journal of Physical Chemistry Letters,<br>2019, 10, 5577-5584.      | 2.1 | 50        |
| 24 | Extended π-conjugative n-p type homostructural graphitic carbon nitride for photodegradation and charge-storage applications. Scientific Reports, 2019, 9, 7186.                                                                | 1.6 | 47        |
| 25 | Shape-Tunable Charge Carrier Dynamics at the Interfaces between Perovskite Nanocrystals and<br>Molecular Acceptors. Journal of Physical Chemistry Letters, 2016, 7, 3913-3919.                                                  | 2.1 | 43        |
| 26 | Quasi-2D perovskite emitters: a boon for efficient blue light-emitting diodes. Journal of Materials<br>Chemistry C, 2020, 8, 14334-14347.                                                                                       | 2.7 | 40        |
| 27 | Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and<br>Solar Cell Performance. Journal of Physical Chemistry Letters, 2017, 8, 137-143.                                         | 2.1 | 39        |
| 28 | Porous–Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis. ACS Applied<br>Materials & Interfaces, 2016, 8, 19994-20002.                                                                                     | 4.0 | 35        |
| 29 | Near-infrared photoactive Cu2ZnSnS4 thin films by co-sputtering. AIP Advances, 2013, 3, .                                                                                                                                       | 0.6 | 32        |
| 30 | Current Trends and Future Perspectives of Nanomaterials in Food Packaging Application. Journal of Nanomaterials, 2022, 2022, 1-32.                                                                                              | 1.5 | 31        |
| 31 | Transport properties of Culn <sub>1â^'x</sub> Al <sub>x</sub> Se <sub>2</sub> /AZnO heterostructure<br>for low cost thin film photovoltaics. Dalton Transactions, 2014, 43, 1974-1983.                                          | 1.6 | 29        |
| 32 | Review—Contemporary Progresses in Carbon-Based Electrode Material in Li-S Batteries. Journal of the<br>Electrochemical Society, 2022, 169, 020530.                                                                              | 1.3 | 28        |
| 33 | Near-infrared photoactive Cu3BiS3 thin films by co-evaporation. Journal of Applied Physics, 2014, 115, .                                                                                                                        | 1.1 | 25        |
| 34 | Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption. Applied Physics Letters, 2017, 110, 223903.                                                                                   | 1.5 | 23        |
| 35 | High Harmonic Generation from Laser-Induced Plasmas of Ni-Doped CsPbBr <sub>3</sub> Nanocrystals:<br>Implications for Extreme Ultraviolet Light Sources. ACS Applied Nano Materials, 2021, 4, 8292-8301.                        | 2.4 | 21        |
| 36 | Engineering of CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> Perovskite Crystals by Alloying Large<br>Organic Cations for Enhanced Thermal Stability and Transport Properties. Angewandte Chemie, 2016,<br>128, 10844-10848. | 1.6 | 18        |

| #  | Article                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction Solar Cells: From Ultrafast<br>Laser Spectroscopy and Electron Microscopy to Device Fabrication and Optimization. Advanced Energy<br>Materials, 2016, 6, 1502356.                                                   | 10.2 | 14        |
| 38 | Metal-free carbazole scaffold dyes as potential nonlinear optical phores: molecular engineering.<br>Journal of Materials Chemistry C, 2020, 8, 16188-16197.                                                                                                                               | 2.7  | 14        |
| 39 | Third-order optical nonlinearities and high-order harmonics generation in Ni-doped CsPbBr3<br>nanocrystals using single- and two-color chirped pulses. Journal of Materials Science, 2022, 57,<br>3468-3485.                                                                              | 1.7  | 14        |
| 40 | Tailoring the Band Gap and Transport Properties of Cu <sub>3</sub> BiS <sub>3</sub> Nanopowders for Photodetector Applications. Journal of Nanoscience and Nanotechnology, 2013, 13, 3901-3909.                                                                                           | 0.9  | 13        |
| 41 | Cu <sub>2</sub> ZnSn(S,Se) <sub>4</sub> thin-films prepared from selenized nanocrystals ink. RSC<br>Advances, 2019, 9, 18420-18428.                                                                                                                                                       | 1.7  | 13        |
| 42 | Solution based synthesis of Cu(In,Ga)Se <sub>2</sub> microcrystals and thin films. RSC Advances, 2019, 9, 35197-35208.                                                                                                                                                                    | 1.7  | 13        |
| 43 | Can perovskite inspired bismuth halide nanocrystals outperform their lead counterparts?. Journal of<br>Materials Chemistry A, 2020, 8, 12951-12963.                                                                                                                                       | 5.2  | 13        |
| 44 | The impact of electrostatic interactions on ultrafast charge transfer at Ag <sub>29</sub><br>nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces. Journal of Materials Chemistry<br>C, 2016, 4, 2894-2900.                                                                  | 2.7  | 12        |
| 45 | Solventâ€Assisted [(Clycine)â€{MP‣iO <sub>2</sub> NPs)] Aggregate for Drug Loading and Cancer Therapy.<br>ChemistrySelect, 2020, 5, 8221-8232.                                                                                                                                            | 0.7  | 12        |
| 46 | Review—Carbon Electrodes in Magnesium Sulphur Batteries: Performance Comparison of Electrodes and Future Directions. Journal of the Electrochemical Society, 2021, 168, 120555.                                                                                                           | 1.3  | 12        |
| 47 | Review—Chemical Structures and Stability of Carbon-doped Graphene Nanomaterials and the Growth<br>Temperature of Carbon Nanomaterials Grown by Chemical Vapor Deposition for Electrochemical<br>Catalysis Reactions. ECS Journal of Solid State Science and Technology, 2022, 11, 041003. | 0.9  | 11        |
| 48 | Perovskite Nanowires for Next-Generation Optoelectronic Devices: Lab to Fab. ACS Applied Energy Materials, 2022, 5, 1342-1377.                                                                                                                                                            | 2.5  | 9         |
| 49 | Can perovskites be efficient photocatalysts in organic transformations?. Journal of Materials<br>Chemistry A, 2022, 10, 12317-12333.                                                                                                                                                      | 5.2  | 9         |
| 50 | The Impact of Grain Alignment of the Electron Transporting Layer on the Performance of Inverted Bulk Heterojunction Solar Cells. Small, 2015, 11, 5272-5279.                                                                                                                              | 5.2  | 6         |
| 51 | Cost-effective Sb-doped SnO <sub>2</sub> films as stable and efficient alternative transparent conducting electrodes for dye-sensitized solar cells. Journal of Materials Chemistry C, 2022, 10, 7997-8008.                                                                               | 2.7  | 5         |
| 52 | Oxygen deficiency induced nickel based oxides for UV & IR sensitive photo-conductive devices.<br>Materials Research Bulletin, 2018, 107, 321-327.                                                                                                                                         | 2.7  | 4         |
| 53 | Nanostructured ternary perovskite oxides as photoconversion efficiency enhancers for DSSC.<br>Journal of Materials Chemistry C, 2022, 10, 1403-1413.                                                                                                                                      | 2.7  | 4         |
| 54 | Halide Ions Distribution and Charge Dynamics in Mixedâ€Halide Perovskites. Physica Status Solidi - Rapid<br>Research Letters, 2022, 16, .                                                                                                                                                 | 1.2  | 3         |

| #  | Article                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Optimization of nanocrystalline Sb doped BaSnO3 for dye-sensitized solar cell applications. AIP<br>Conference Proceedings, 2020, , .                                                                                                                                                      | 0.3  | 1         |
| 56 | Heterojunction Solar Cells: Remarkably High Conversion Efficiency of Inverted Bulk Heterojunction<br>Solar Cells: From Ultrafast Laser Spectroscopy and Electron Microscopy to Device Fabrication and<br>Optimization (Adv. Energy Mater. 11/2016). Advanced Energy Materials, 2016, 6, . | 10.2 | 0         |