Yuko Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6130925/publications.pdf

Version: 2024-02-01

32	1,222	17 h-index	31
papers	citations		g-index
38	38	38	1692
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Live imaging of transcription sites using an elongating RNA polymerase Il–specific probe. Journal of Cell Biology, 2022, 221, .	5.2	22
2	Imaging transcription elongation dynamics by new technologies unveils the organization of initiation and elongation in transcription factories. Current Opinion in Cell Biology, 2022, 74, 71-79.	5.4	11
3	Single-cell profiling of transcriptome and histone modifications with EpiDamID. Molecular Cell, 2022, 82, 1956-1970.e14.	9.7	28
4	Live-cell epigenome manipulation by synthetic histone acetylation catalyst system. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	24
5	Multiplexed Imaging of Posttranslational Modifications of Endogenous Proteins in Live Cells. Methods in Molecular Biology, 2021, 2350, 31-41.	0.9	2
6	H4K20me1 and H3K27me3 are concurrently loaded onto the inactive X chromosome but dispensable for inducing gene silencing. EMBO Reports, 2021, 22, e51989.	4.5	40
7	Transcription organizes euchromatin via microphase separation. Nature Communications, 2021, 12, 1360.	12.8	83
8	A live imaging system to analyze spatiotemporal dynamics of RNA polymerase II modification in Arabidopsis thaliana. Communications Biology, 2021, 4, 580.	4.4	5
9	Live-cell imaging probes to track chromatin modification dynamics. Microscopy (Oxford, England), 2021, 70, 415-422.	1.5	16
10	Dynamic Behavior of Inactive X During the Cell Cycle as Revealed by H3K27me3-Specific Intracellular Antibody. Methods in Molecular Biology, 2021, 2329, 237-247.	0.9	0
11	Intrabody-based FRET probe to visualize endogenous histone acetylation. Scientific Reports, 2019, 9, 10188.	3.3	10
12	Cyclization of Single-Chain Fv Antibodies Markedly Suppressed Their Characteristic Aggregation Mediated by Inter-Chain VH-VL Interactions. Molecules, 2019, 24, 2620.	3.8	20
13	A genetically encoded probe for imaging nascent and mature HA-tagged proteins in vivo. Nature Communications, 2019, 10, 2947.	12.8	72
14	Preparation of single-chain Fv antibodies in the cytoplasm of Escherichia coli by simplified and systematic chaperone optimization. Journal of Biochemistry, 2019, 166, 455-462.	1.7	8
15	Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis. Development (Cambridge), 2019, 146, .	2.5	81
16	Histone H3.3 sub-variant H3mm7 is required for normal skeletal muscle regeneration. Nature Communications, 2018, 9, 1400.	12.8	23
17	Visualizing the Dynamics of Inactive X Chromosomes in Living Cells Using Antibody-Based Fluorescent Probes. Methods in Molecular Biology, 2018, 1861, 91-102.	0.9	15
18	JQ1 affects BRD2-dependent and independent transcription regulation without disrupting H4-hyperacetylated chromatin states. Epigenetics, 2018, 13, 410-431.	2.7	32

#	Article	IF	Citations
19	Reduction in chromosome mobility accompanies nuclear organization during early embryogenesis in Caenorhabditis elegans. Scientific Reports, 2017, 7, 3631.	3.3	24
20	Semi-quantitative Analysis of H4K20me1 Levels in Living Cells Using Mintbody. Bio-protocol, 2017, 7, e2276.	0.4	3
21	Identification of Immunoglobulin Gene Sequences from a Small Read Number of mRNA-Seq Using Hybridomas. PLoS ONE, 2016, 11, e0165473.	2.5	11
22	A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation. Journal of Molecular Biology, 2016, 428, 3885-3902.	4.2	52
23	Histone H3.5 forms an unstable nucleosome and accumulates around transcription start sites in human testis. Epigenetics and Chromatin, 2016, 9, 2.	3.9	53
24	<i>In vivo</i> tracking of histone H3 lysine 9 acetylation in <i>Xenopus laevis</i> during tail regeneration. Genes To Cells, 2016, 21, 358-369.	1.2	29
25	Histone Acetylation on <i>Drosophila</i> Polytene Chromosomes Visualized by Mintbody. Cytologia, 2015, 80, 383-384.	0.6	8
26	Tissue-specific expression of histone H3 variants diversified after species separation. Epigenetics and Chromatin, 2015, 8, 35.	3.9	51
27	Incorporation of histone H3.1 suppresses the lineage potential of skeletal muscle. Nucleic Acids Research, 2015, 43, 775-786.	14.5	34
28	Visualizing posttranslational and epigenetic modifications of endogenous proteins in vivo. Histochemistry and Cell Biology, 2015, 144, 101-109.	1.7	49
29	Quantifying histone and RNA polymerase II post-translational modification dynamics in mother and daughter cells. Methods, 2014, 70, 77-88.	3.8	16
30	Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature, 2014, 516, 272-275.	27.8	237
31	Heterochromatin Dynamics during the Differentiation Process Revealed by the DNA Methylation Reporter Mouse, MethylRO. Stem Cell Reports, 2014, 2, 910-924.	4.8	40
32	Genetically encoded system to track histone modification in vivo. Scientific Reports, 2013, 3, 2436.	3.3	96