Anna Yu Romanchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6130899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene oxide for effective radionuclide removal. Physical Chemistry Chemical Physics, 2013, 15, 2321.	1.3	361
2	Solubility of Nanocrystalline Cerium Dioxide: Experimental Data and Thermodynamic Modeling. Journal of Physical Chemistry C, 2016, 120, 22615-22626.	1.5	89
3	Origin of long-range orientational pore ordering in anodic films on aluminium. Journal of Materials Chemistry, 2012, 22, 11922.	6.7	57
4	Enhanced Sorption of Radionuclides by Defect-Rich Graphene Oxide. ACS Applied Materials & Interfaces, 2020, 12, 45122-45135.	4.0	50
5	Plutonium sorption onto hematite colloids at femto- and nanomolar concentrations. Radiochimica Acta, 2011, 99, 137-144.	0.5	49
6	Cesium Sorption and Desorption on Glauconite, Bentonite, Zeolite and Diatomite. Minerals (Basel,) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
7	Formation of crystalline PuO2+·nH2O nanoparticles upon sorption of Pu(V,VI) onto hematite. Geochimica Et Cosmochimica Acta, 2013, 121, 29-40.	1.6	44
8	Towards the surface hydroxyl species in CeO ₂ nanoparticles. Nanoscale, 2019, 11, 18142-18149.	2.8	41
9	Speciation of Uranium and Plutonium From Nuclear Legacy Sites to the Environment: A Mini Review. Frontiers in Chemistry, 2020, 8, 630.	1.8	40
10	Cs(I) and Sr(II) Sorption onto Graphene Oxide. Solvent Extraction and Ion Exchange, 2016, 34, 594-602.	0.8	37

10	Cs(I) and Sr(II) Sorption onto Graphene Oxide. Solvent Extraction and Ion Exchange, 2016, 34, 594-602.	0.8	37
11	A Novel Metastable Pentavalent Plutonium Solid Phase on the Pathway from Aqueous Plutonium(VI) to PuO ₂ Nanoparticles. Angewandte Chemie - International Edition, 2019, 58, 17558-17562.	7.2	37
12	New insights into the mechanism of graphene oxide and radionuclide interaction. Carbon, 2020, 158, 291-302.	5.4	37
13	Cs+ sorption onto Kutch clays: Influence of competing ions. Applied Clay Science, 2018, 166, 88-93.	2.6	28
14	The missing pieces of the PuO ₂ nanoparticle puzzle. Nanoscale, 2020, 12, 18039-18048.	2.8	28
15	Behavior of plutonium in the environment. Russian Chemical Reviews, 2016, 85, 995-1010.	2.5	24
16	The Application of HEXS and HERFD XANES for Accurate Structural Characterisation of Actinide Nanomaterials: The Case of ThO ₂ . Chemistry - A European Journal, 2021, 27, 252-263.	1.7	24
17	Actinides sorption onto hematite: experimental data, surface complexation modeling and linear free energy relationship. Radiochimica Acta, 2014, 102, 303-310.	0.5	23
18	Understanding the size effects on the electronic structure of ThO ₂ nanoparticles. Physical Chemistry Chemical Physics, 2019, 21, 10635-10643.	1.3	23

Αννά Υυ Κομανόμικ

#	Article	IF	CITATIONS
19	Eu(III) sorption onto various montmorillonites: Experiments and modeling. Applied Clay Science, 2019, 175, 22-29.	2.6	22
20	Size Effects in Nanocrystalline Thoria. Journal of Physical Chemistry C, 2019, 123, 23167-23176.	1.5	19
21	Am(III) sorption onto TiO2 samples with different crystallinity and varying pore size distributions. Applied Geochemistry, 2014, 42, 69-76.	1.4	17
22	U(VI) sorption onto natural sorbents. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 293-301.	0.7	17
23	Rapid method for the purification of graphene oxide. RSC Advances, 2015, 5, 50365-50371.	1.7	16
24	Redox-mediated formation of plutonium oxide nanoparticles. Dalton Transactions, 2018, 47, 11239-11244.	1.6	16
25	Effective coordination numbers from EXAFS: general approaches for lanthanide and actinide dioxides. Journal of Synchrotron Radiation, 2022, 29, 288-294.	1.0	14
26	Sorption of actinides onto nanodiamonds. Radiochimica Acta, 2015, 103, 205-211.	0.5	12
27	Partitioning and speciation of Pu in the sedimentary rocks aquifer from the deep liquid nuclear waste disposal. Radiochimica Acta, 2015, 103, 175-185.	0.5	12
28	Insight into the structure–property relationship of UO ₂ nanoparticles. Inorganic Chemistry Frontiers, 2021, 8, 1102-1110.	3.0	12
29	Np(V) uptake by bentonite clay: Effect of accessory Fe oxides/hydroxides on sorption and speciation. Applied Geochemistry, 2017, 78, 74-82.	1.4	10
30	Np(V) uptake by various clays. Applied Geochemistry, 2018, 92, 1-8.	1.4	9
31	To form or not to form: PuO ₂ nanoparticles at acidic pH. Environmental Science: Nano, 2022, 9, 1509-1518.	2.2	7
32	High Surface Area "3D Graphene Oxide―for Enhanced Sorption of Radionuclides. Advanced Materials Interfaces, 2022, 9, .	1.9	7
33	The role of colloid particles in the albumin-lanthanides interaction: The study of aggregation mechanisms. Colloids and Surfaces B: Biointerfaces, 2016, 146, 507-513.	2.5	6
34	Sorption of Am iii onto orthophosphates of the rare-earth elements with different crystal structures. Mendeleev Communications, 2017, 27, 188-191.	0.6	6
35	Sorption behavior and speciation of AmIII in orthophosphates of rare-earth elements. Mendeleev Communications, 2018, 28, 303-305.	0.6	6
36	Sorption of Eu (III) onto Nano-Sized H-Titanates of Different Structures. Applied Sciences (Switzerland), 2019, 9, 697.	1.3	6

Αννά Υυ Κομανικ

#	Article	IF	CITATIONS
37	Photoreduction of Pu(V,VI) by TiO2. Radiochimica Acta, 2016, 104, 843-851.	0.5	5
38	Interaction of plutonium with iron- and chromium-containing precipitates under the conditions of reservoir bed for liquid radioactive waste. Radiochemistry, 2016, 58, 662-667.	0.2	5
39	A Novel Metastable Pentavalent Plutonium Solid Phase on the Pathway from Aqueous Plutonium(VI) to PuO ₂ Nanoparticles. Angewandte Chemie, 2019, 131, 17722-17726.	1.6	5
40	The Application of HEXS and HERFD XANES for Accurate Structural Characterisation of Actinide Nanomaterials: The Case of ThO 2. Chemistry - A European Journal, 2021, 27, 5-5.	1.7	5
41	Partitioning of uranium in contaminated bottom sediments: The meaning of fractionation. Journal of Environmental Radioactivity, 2021, 229-230, 106539.	0.9	3
42	Function of Colloidal and Nanoparticles in the Sorption of Radionuclides. , 2020, , 151-176.		3
43	Regularities of the sorption behavior of actinide ions on mineral colloid particles. Russian Journal of General Chemistry, 2011, 81, 2029-2038.	0.3	2
44	Determination of the secondary phases at the acidic LNW disposal. MRS Advances, 2016, 1, 4053-4059.	0.5	1
45	Sorption of radionuclides onto minerals: Experiments and modelling. E3S Web of Conferences, 2019, 98, 10006.	0.2	1
46	Sorption of 137Cs and 90Sr on Organic Sorbents. Applied Sciences (Switzerland), 2021, 11, 11531.	1.3	1
47	Rücktitelbild: A Novel Metastable Pentavalent Plutonium Solid Phase on the Pathway from Aqueous Plutonium(VI) to PuO ₂ Nanoparticles (Angew. Chem. 49/2019). Angewandte Chemie, 2019, 131, 18044-18044.	1.6	0
48	Mutual impact of reservoir sands and acidic liquid radioactive waste. E3S Web of Conferences, 2019, 98, 10008.	0.2	0