Haodong Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6130371/publications.pdf

Version: 2024-02-01

		126907	182427
53	3,913	33	51
papers	citations	h-index	g-index
53	53	53	2326
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tuning band structure of graphitic carbon nitride for efficient degradation of sulfamethazine: Atmospheric condition and theoretical calculation. Chinese Chemical Letters, 2022, 33, 1385-1389.	9.0	32
2	Visible-light degradation of antibiotics catalyzed by titania/zirconia/graphitic carbon nitride ternary nanocomposites: a combined experimental and theoretical study. Applied Catalysis B: Environmental, 2022, 300, 120633.	20.2	82
3	Visible light photocatalytic degradation of sulfanilamide enhanced by Mo doping of BiOBr nanoflowers. Journal of Hazardous Materials, 2022, 424, 127563.	12.4	104
4	Eliminating tetracycline antibiotics matrix via photoactivated sulfate radical-based advanced oxidation process over the immobilized MIL-88A: Batch and continuous experiments. Chemical Engineering Journal, 2022, 431, 133213.	12.7	39
5	Activation of peracetic acid by metal-organic frameworks (ZIF-67) for efficient degradation of sulfachloropyridazine. Chinese Chemical Letters, 2022, 33, 3172-3176.	9.0	27
6	Application of Titanate Nanotubes for Photocatalytic Decontamination in Water: Challenges and Prospects. ACS ES&T Engineering, 2022, 2, 1015-1038.	7.6	24
7	Photocatalytic degradation of GenX in water using a new adsorptive photocatalyst. Water Research, 2022, 220, 118650.	11.3	32
8	Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(VI) sequestration and activation of persulfate for bisphenol A degradation. Science of the Total Environment, 2021, 752, 141901.	8.0	175
9	Degradation of acetaminophen by activated peroxymonosulfate using Co(OH)2 hollow microsphere supported titanate nanotubes: Insights into sulfate radical production pathway through CoOH+ activation. Chemical Engineering Journal, 2021, 406, 126877.	12.7	169
10	Adsorptive removal of ciprofloxacin with different dissociated species onto titanate nanotubes. Journal of Cleaner Production, 2021, 278, 123924.	9.3	61
11	Simultaneous adsorption of uranium(VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects. Chemical Engineering Journal, 2021, 406, 126752.	12.7	89
12	Insights into catalytic activation of peroxymonosulfate for carbamazepine degradation by MnO2 nanoparticles in-situ anchored titanate nanotubes: Mechanism, ecotoxicity and DFT study. Journal of Hazardous Materials, 2021, 402, 123779.	12.4	141
13	Photo-ammonification of low molecular weight dissolved organic nitrogen by direct and indirect photolysis. Science of the Total Environment, 2021, 764, 142930.	8.0	8
14	Activation of peroxydisulfate by V-Fe concentrate ore for enhanced degradation of carbamazepine: Surface $\hat{a}_i V(III)$ and $\hat{a}_i V(IV)$ as electron donors promoted the regeneration of $\hat{a}_i Fe(II)$. Applied Catalysis B: Environmental, 2021, 282, 119559.	20.2	128
15	A carbon-rich g-C3N4 with promoted charge separation for highly efficient photocatalytic degradation of amoxicillin. Chinese Chemical Letters, 2021, 32, 2787-2791.	9.0	47
16	Silicate-Enhanced Heterogeneous Flow-Through Electro-Fenton System Using Iron Oxides under Nanoconfinement. Environmental Science & Environmental Scie	10.0	192
17	A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants. Water Research, 2021, 194, 116961.	11.3	123
18	Ternary TiO2/WO3/CQDs nanocomposites for enhanced photocatalytic mineralization of aqueous cephalexin: Degradation mechanism and toxicity evaluation. Chemical Engineering Journal, 2021, 412, 128679.	12.7	40

#	Article	IF	Citations
19	Surface modification of BiOBr/TiO2 by reduced AgBr for solar-driven PAHs degradation: Mechanism insight and application assessment. Journal of Hazardous Materials, 2021, 412, 125221.		58
20	Highly efficient AgBr/h-MoO3 with charge separation tuning for photocatalytic degradation of trimethoprim: Mechanism insight and toxicity assessment. Science of the Total Environment, 2021, 781, 146754.	8.0	38
21	Experimental evidences and theoretical calculations on phenanthrene degradation in a solar-light-driven photocatalysis system using silica aerogel supported TiO2 nanoparticles: Insights into reactive sites and energy evolution. Chemical Engineering Journal, 2021, 419, 129605.	12.7	56
22	Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations. Applied Catalysis B: Environmental, 2021, 293, 120229.	20.2	288
23	Oxygen defective titanate nanotubes induced by iron deposition for enhanced peroxymonosulfate activation and acetaminophen degradation: Mechanisms, water chemistry effects, and theoretical calculation. Journal of Hazardous Materials, 2021, 418, 126180.	12.4	33
24	Sorption of dispersed petroleum hydrocarbons by activated charcoals: Effects of oil dispersants. Environmental Pollution, 2020, 256, 113416.	7. 5	23
25	Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal, 2020, 380, 122506.	12.7	285
26	2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: Catalytic "hot spots―at the rutile–anatase–titanate interfaces. Applied Catalysis B: Environmental, 2020, 263, 118357.	20.2	211
27	Simultaneous control of soil erosion and arsenic leaching at disturbed land using polyacrylamide modified magnetite nanoparticles. Science of the Total Environment, 2020, 702, 134997.	8.0	22
28	Efficient removal and long-term sequestration of cadmium from aqueous solution using ferrous sulfide nanoparticles: Performance, mechanisms, and long-term stability. Science of the Total Environment, 2020, 704, 135402.	8.0	28
29	Removal of $17\hat{l}^2$ -Estradiol by Activated Charcoal Supported Titanate Nanotubes (TNTs@AC) through Initial Adsorption and Subsequent Photo-Degradation: Intermediates, DFT calculation, and Mechanisms. Water (Switzerland), 2020, 12, 2121.	2.7	9
30	Insights into heterogeneous catalytic activation of peroxymonosulfate by natural chalcopyrite: pH-dependent radical generation, degradation pathway and mechanism. Chemical Engineering Journal, 2020, 397, 125387.	12.7	157
31	Hydrogen bonding rather than cation bridging promotes graphene oxide attachment to lipid membranes in the presence of heavy metals. Environmental Science: Nano, 2020, 7, 2240-2251.	4.3	5
32	Pre-accumulation and in-situ destruction of diclofenac by a photo-regenerable activated carbon fiber supported titanate nanotubes composite material: Intermediates, DFT calculation, and ecotoxicity. Journal of Hazardous Materials, 2020, 400, 123225.	12.4	86
33	Immobilization of U(VI) by stabilized iron sulfide nanoparticles: Water chemistry effects, mechanisms, and long-term stability. Chemical Engineering Journal, 2020, 393, 124692.	12.7	52
34	Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: Theoretical calculation, ofloxacin degradation pathways and toxicity evolution. Chemical Engineering Journal, 2020, 400, 125918.	12.7	110
35	Piezo-activation of peroxymonosulfate for benzothiazole removal in water. Journal of Hazardous Materials, 2020, 393, 122448.	12.4	102
36	Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr)oxides/carbon sphere composite. Chemical Engineering Journal, 2020, 388, 124230.	12.7	60

#	Article	IF	CITATIONS
37	Efficient adsorption of europium (III) and uranium (VI) by titanate nanorings: Insights into radioactive metal species. Environmental Science and Ecotechnology, 2020, 2, 100031.	13.5	20
38	Enhanced activation of molecular oxygen and degradation of tetracycline over Cu-S4 atomic clusters. Applied Catalysis B: Environmental, 2020, 272, 118966.	20.2	97
39	In-situ construction of Co(OH)2 nanoparticles decorated urchin-like WO3 for highly efficient degradation of sulfachloropyridazine via peroxymonosulfate activation: Intermediates and DFT calculation. Chemical Engineering Journal, 2020, 395, 125186.	12.7	70
40	Synchronous degradation of aqueous benzotriazole and bromate reduction in catalytic ozonation: Effect of matrix factor, degradation mechanism and application strategy in water treatment. Science of the Total Environment, 2020, 727, 138696.	8.0	13
41	Novel CuCo ₂ O ₄ Composite Spinel with a Meso-Macroporous Nanosheet Structure for Sulfate Radical Formation and Benzophenone-4 Degradation: Interface Reaction, Degradation Pathway, and DFT Calculation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20522-20535.	8.0	83
42	Co-adsorption of ciprofloxacin and Cu(II) onto titanate nanotubes: Speciation variation and metal-organic complexation. Journal of Molecular Liquids, 2019, 292, 111375.	4.9	23
43	Efficient activation of peroxymonosulfate by hollow cobalt hydroxide for degradation of ibuprofen and theoretical study. Chinese Chemical Letters, 2019, 30, 2191-2195.	9.0	110
44	Reductive immobilization and long-term remobilization of radioactive pertechnetate using bio-macromolecules stabilized zero valent iron nanoparticles. Chinese Chemical Letters, 2019, 30, 2163-2168.	9.0	43
45	Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light. Chemosphere, 2019, 233, 198-206.	8.2	60
46	Enhanced immobilization of U(VI) using a new type of FeS-modified FeO core-shell particles. Chemical Engineering Journal, 2019, 359, 1617-1628.	12.7	60
47	Sequestration of pertechnetate using carboxymethyl cellulose stabilized FeS nanoparticles: Effectiveness and mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 373-380.	4.7	22
48	Hydrothermal synthesis of graphene grafted titania/titanate nanosheets for photocatalytic degradation of 4-chlorophenol: Solar-light-driven photocatalytic activity and computational chemistry analysis. Chemical Engineering Journal, 2018, 331, 685-694.	12.7	75
49	Improved microalgae biomass production and wastewater treatment: Pre-treating municipal anaerobic digestate for algae cultivation. , 2018, , .		2
50	Degradation of petroleum hydrocarbons in seawater by simulated surface-level atmospheric ozone: Reaction kinetics and effect of oil dispersant. Marine Pollution Bulletin, 2018, 135, 427-440.	5.0	49
51	Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community. Scientific Reports, 2017, 7, 44626.	3.3	18
52	Hydrogen titanate nanosheets with both adsorptive and photocatalytic properties used for organic dyes removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 211-218.	4.7	32
53	Decoloration study for removal of water-soluble basic dye using organo-attapulgite. , 2011, , .		0