
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6130253/publications.pdf Version: 2024-02-01

AUDODA SANTOS

#	Article	IF	CITATIONS
1	Abatement of chlorobenzenes in aqueous phase by persulfate activated by alkali enhanced by surfactant addition. Journal of Environmental Management, 2022, 306, 114475.	7.8	18
2	Simultaneous addition of surfactant and oxidant to remediate a polluted soil with chlorinated organic compounds: Slurry and column experiments. Journal of Environmental Chemical Engineering, 2022, 10, 107625.	6.7	10
3	Enhanced remediation of a real HCH-polluted soil by the synergetic alkaline and ultrasonic activation of persulfate. Chemical Engineering Journal, 2022, 440, 135901.	12.7	26
4	Evaluation of VLEs for Binaries of Five Compounds Involved in the Production Processes of Cyclohexanone. ChemEngineering, 2022, 6, 42.	2.4	1
5	Non-Ionic Surfactant Recovery in Surfactant Enhancement Aquifer Remediation Effluent with Chlorobenzenes by Semivolatile Chlorinated Organic Compounds Volatilization. International Journal of Environmental Research and Public Health, 2022, 19, 7547.	2.6	2
6	Regeneration of Granulated Spent Activated Carbon with 1,2,4-Trichlorobenzene Using Thermally Activated Persulfate. Industrial & amp; Engineering Chemistry Research, 2022, 61, 9611-9620.	3.7	5
7	Abatement of Naphthalene by Persulfate Activated by Goethite and Visible LED Light at Neutral pH: Effect of Common Ions and Organic Matter. Catalysts, 2022, 12, 732.	3.5	Ο
8	Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase. Science of the Total Environment, 2021, 751, 141782.	8.0	30
9	Remediation of HCHs-contaminated sediments by chemical oxidation treatments. Science of the Total Environment, 2021, 751, 141754.	8.0	32
10	Persulfate in Remediation of Soil and Groundwater Contaminated byÂOrganic Compounds. Environmental Pollution, 2021, , 221-262.	0.4	2
11	Abatement of 1,2,4-Trichlorobencene by Wet Peroxide Oxidation Catalysed by Goethite and Enhanced by Visible LED Light at Neutral pH. Catalysts, 2021, 11, 139.	3.5	16
12	Application of Chelating Agents to Enhance Fenton Process in Soil Remediation: A Review. Catalysts, 2021, 11, 722.	3.5	28
13	Special Issue on "Green Catalysts: Application to Waste and Groundwater Treatment― Catalysts, 2021, 11, 1043.	3.5	Ο
14	Degradation of HCHs by thermally activated persulfate in soil system: Effect of temperature and oxidant concentration. Journal of Environmental Chemical Engineering, 2021, 9, 105668.	6.7	37
15	Remediation of real soil polluted with hexachlorocyclohexanes (α-HCH and β-HCH) using combined thermal and alkaline activation of persulfate: Optimization of the operating conditions. Separation and Purification Technology, 2021, 270, 118795.	7.9	27
16	Partition of a mixture of chlorinated organic compounds in real contaminated soils between soil and aqueous phase using surfactants: Influence of pH and surfactant type. Journal of Environmental Chemical Engineering, 2021, 9, 105908.	6.7	19
17	Partitioning of chlorinated organic compounds from dense non-aqueous phase liquids and contaminated soils from lindane production wastes to the aqueous phase. Chemosphere, 2020, 239, 124798.	8.2	34
18	Comparison of real wastewater oxidation with Fenton/Fenton-like and persulfate activated by NaOH and Fe(II). Journal of Environmental Management, 2020, 255, 109926.	7.8	25

#	Article	IF	CITATIONS
19	Remediation of soil contaminated by lindane wastes using alkaline activated persulfate: Kinetic model. Chemical Engineering Journal, 2020, 393, 124646.	12.7	50
20	Humic acids extracted from compost as amendments for Fenton treatment of diesel-contaminated soil. Environmental Science and Pollution Research, 2020, 27, 22225-22234.	5.3	17
21	Thermally activated persulfate for the chemical oxidation of chlorinated organic compounds in groundwater. Journal of Environmental Management, 2020, 261, 110240.	7.8	44
22	Surfactant-Enhanced Solubilization of Chlorinated Organic Compounds Contained in DNAPL from Lindane Waste: Effect of Surfactant Type and pH. International Journal of Environmental Research and Public Health, 2020, 17, 4494.	2.6	18
23	Abatement of dichloromethane using persulfate activated by alkali: A kinetic study. Separation and Purification Technology, 2020, 241, 116679.	7.9	42
24	Wet Peroxide Oxidation of Chlorobenzenes Catalyzed by Goethite and Promoted by Hydroxylamine. Catalysts, 2019, 9, 553.	3.5	15
25	Transformation of Cyclic Ketones as Impurities in Cyclohexanone in the Caprolactam Production Process. Industrial & Engineering Chemistry Research, 2019, 58, 21983-21995.	3.7	1
26	Linear Amides in Caprolactam from Linear Ketone Impurities in Cyclohexanone Obtained from Cyclohexane: Kinetics and Identification. Industrial & Engineering Chemistry Research, 2019, 58, 11878-11890.	3.7	6
27	Improved Etherification of Glycerol with Tert-Butyl Alcohol by the Addition of Dibutyl Ether as Solvent. Catalysts, 2019, 9, 378.	3.5	21
28	Methanol-enhanced degradation of carbon tetrachloride by alkaline activation of persulfate: Kinetic model. Science of the Total Environment, 2019, 666, 631-640.	8.0	55
29	Soil flushing pilot test in a landfill polluted with liquid organic wastes from lindane production. Heliyon, 2019, 5, e02875.	3.2	13
30	Selective removal of chlorinated organic compounds from lindane wastes by combination of nonionic surfactant soil flushing and Fenton oxidation. Chemical Engineering Journal, 2019, 376, 120009.	12.7	52
31	Lindane degradation by electrooxidation process: Effect of electrode materials on oxidation and mineralization kinetics. Water Research, 2018, 135, 220-230.	11.3	111
32	Removal of lindane wastes by advanced electrochemical oxidation. Chemosphere, 2018, 202, 400-409.	8.2	80
33	Phenol abatement using persulfate activated by nZVI, H ₂ O ₂ and NaOH and development of a kinetic model for alkaline activation. Environmental Technology (United Kingdom), 2018, 39, 35-43.	2.2	23
34	Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Science of the Total Environment, 2018, 615, 1070-1077.	8.0	89
35	Remediation of aged diesel contaminated soil by alkaline activated persulfate. Science of the Total Environment, 2018, 622-623, 41-48.	8.0	119
36	Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions. Journal of Chemical Technology and Biotechnology, 2018, 93, 1270-1278.	3.2	42

#	Article	IF	CITATIONS
37	Optimization-Based Design of a Reactive Distillation Column for the Purification Process of Cyclohexanone Using Rigorous Simulation Model and Validated Using an Experimental Packed Column. Industrial & Engineering Chemistry Research, 2018, 57, 16407-16422.	3.7	2
38	In situ chemical reduction of chlorinated organic compounds from lindane production wastes by zero valent iron microparticles. Journal of Water Process Engineering, 2018, 26, 146-155.	5.6	26
39	Chlorinated organic compounds in liquid wastes (DNAPL) from lindane production dumped in landfills in SabiA±anigo (Spain). Environmental Pollution, 2018, 242, 1616-1624.	7.5	60
40	Oxidation of priority and emerging pollutants with persulfate activated by iron: Effect of iron valence and particle size. Chemical Engineering Journal, 2017, 318, 197-205.	12.7	65
41	Optimization of the application of the Fenton chemistry for the remediation of a contaminated soil with polycyclic aromatic hydrocarbons. Journal of Chemical Technology and Biotechnology, 2016, 91, 1763-1772.	3.2	17
42	Kinetics of Lindane Dechlorination by Zerovalent Iron Microparticles: Effect of Different Salts and Stability Study. Industrial & Engineering Chemistry Research, 2016, 55, 12776-12785.	3.7	32
43	Degradation of Hexachlorocyclohexanes (HCHs) by Stable Zero Valent Iron (ZVI) Microparticles. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	30
44	Modelling of a Reactive Distillation in the production process of high purity Cyclohexanone to produce caprolactam. Computer Aided Chemical Engineering, 2016, , 176-181.	0.5	2
45	Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: A column study. Science of the Total Environment, 2016, 566-567, 480-488.	8.0	53
46	Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil. Science of the Total Environment, 2016, 563-564, 649-656.	8.0	93
47	Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water. Science of the Total Environment, 2016, 563-564, 657-663.	8.0	57
48	Remediation of soil contaminated by <scp>NAPLs</scp> using modified Fenton reagent: application to gasoline type compounds. Journal of Chemical Technology and Biotechnology, 2015, 90, 754-764.	3.2	23
49	Remediation of a Biodiesel Blend-Contaminated Soil with Activated Persulfate by Different Sources of Iron. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	27
50	Glycerol etherification with benzyl alcohol over sulfated zirconia catalysts. Applied Catalysis A: General, 2015, 505, 36-43.	4.3	21
51	Vapor–Liquid Equilibria of Cyclohexanone + 2-Cyclohexen-1-one and Cyclohexanol + 2-Cyclohexen-1-one, Validated in a Packed Column Distillation Journal of Chemical & Engineering Data, 2015, 60, 2818-2826.	1.9	5
52	Kinetic Model of Catalytic Self-Condensation of Cyclohexanone over Amberlyst 15. Industrial & Engineering Chemistry Research, 2014, 53, 19117-19127.	3.7	13
53	Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere, 2014, 101, 86-92.	8.2	269
54	Dye Oxidation in Aqueous Phase by Using Zero-Valent Iron as Persulfate Activator: Kinetic Model and Effect of Particle Size. Industrial & Engineering Chemistry Research, 2014, 53, 12288-12294.	3.7	40

#	Article	IF	CITATIONS
55	Remediation of a biodiesel blend-contaminated soil by using a modified Fenton process. Environmental Science and Pollution Research, 2014, 21, 12198-12207.	5.3	49
56	Remediation of soil polluted with herbicides by Fenton-like reaction: Kinetic model of diuron degradation. Applied Catalysis B: Environmental, 2014, 144, 252-260.	20.2	37
57	Glycerol etherification over acid ion exchange resins: effect of catalyst concentration and reusability. Journal of Chemical Technology and Biotechnology, 2013, 88, 2027-2038.	3.2	17
58	Soil-Washing Effluent Treatment by Selective Adsorption of Toxic Organic Contaminants on Activated Carbon. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	21
59	Etherification of Glycerol with Benzyl Alcohol. Industrial & Engineering Chemistry Research, 2013, 52, 14545-14555.	3.7	23
60	Coke formation in copper catalyst during cyclohexanol dehydrogenation: Kinetic deactivation model and catalyst characterization. Chemical Engineering Journal, 2013, 214, 119-128.	12.7	22
61	Kinetic of Alkali Catalyzed Self-Condensation of Cyclohexanone. Industrial & Engineering Chemistry Research, 2013, 52, 2257-2265.	3.7	23
62	Soil remediation using soil washing followed by Fenton oxidation. Chemical Engineering Journal, 2013, 220, 125-132.	12.7	73
63	Kinetics of Alkali-Catalyzed Condensation of Impurities in the Cyclohexanone Purification Process. Industrial & Engineering Chemistry Research, 2013, 52, 15780-15788.	3.7	11
64	Kinetic of oxidation and mineralization of priority and emerging pollutants by activated persulfate. Chemical Engineering Journal, 2012, 213, 225-234.	12.7	49
65	Etherification of Glycerol by <i>tert</i> -Butyl Alcohol: Kinetic Model. Industrial & Engineering Chemistry Research, 2012, 51, 9500-9509.	3.7	45
66	Study of the deactivation of copper-based catalysts for dehydrogenation of cyclohexanol to cyclohexanone. Catalysis Today, 2012, 187, 150-158.	4.4	30
67	Diuron abatement in contaminated soil using Fenton-like process. Chemical Engineering Journal, 2012, 183, 357-364.	12.7	31
68	Kinetic model of 2-cyclohexenone formation from cyclohexanol and 2-cyclohexenol dehydrogenation. Chemical Engineering Journal, 2012, 192, 129-137.	12.7	8
69	Phenol Production Kinetic Model in the Cyclohexanol Dehydrogenation Process. Industrial & Engineering Chemistry Research, 2011, 50, 8498-8504.	3.7	7
70	Effectiveness of AOP's on abatement of emerging pollutants and their oxidation intermediates: Nicotine removal with Fenton's Reagent. Desalination, 2011, 280, 108-113.	8.2	39
71	Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process. Chemical Engineering Journal, 2011, 172, 689-697.	12.7	91
72	Enhancing p-cresol extraction from soil. Chemosphere, 2011, 84, 260-264.	8.2	24

#	Article	IF	CITATIONS
73	Soil remediation by Fenton-like process: Phenol removal and soil organic matter modification. Chemical Engineering Journal, 2011, 170, 36-43.	12.7	71
74	Kinetic study of diuron oxidation and mineralization by persulphate: Effects of temperature, oxidant concentration and iron dosage method. Chemical Engineering Journal, 2011, 170, 127-135.	12.7	140
75	Comparative dehydrogenation of cyclohexanol to cyclohexanone with commercial copper catalysts: Catalytic activity and impurities formed. Applied Catalysis A: General, 2011, 392, 19-27.	4.3	44
76	Mineralization lumping kinetic model for abatement of organic pollutants using Fenton's reagent. Catalysis Today, 2010, 151, 89-93.	4.4	15
77	Diuron abatement using activated persulphate: Effect of pH, Fe(II) and oxidant dosage. Chemical Engineering Journal, 2010, 162, 257-265.	12.7	199
78	Fenton Pretreatment in the Catalytic Wet Oxidation of Phenol. Industrial & Engineering Chemistry Research, 2010, 49, 5583-5587.	3.7	17
79	Chemical oxidation of 2,4-dimethylphenol in soil by heterogeneous Fenton process. Journal of Hazardous Materials, 2009, 162, 785-790.	12.4	47
80	In situ oxidation remediation technologies: Kinetic of hydrogen peroxide decomposition on soil organic matter. Journal of Hazardous Materials, 2009, 170, 627-632.	12.4	52
81	Kinetic Modeling of Toxicity Evolution during Phenol Oxidation. Industrial & Engineering Chemistry Research, 2009, 48, 2844-2850.	3.7	6
82	Toxicity and biodegradability of imidazolium ionic liquids. Journal of Hazardous Materials, 2008, 151, 268-273.	12.4	585
83	Activated carbon as catalyst in wet oxidation of phenol: Effect of the oxidation reaction on the catalyst properties and stability. Applied Catalysis B: Environmental, 2008, 81, 122-131.	20.2	38
84	Detoxification Kinetic Modeling for Nonbiodegradable Wastewaters: An Ecotoxicity Lumping Approach. Industrial & Engineering Chemistry Research, 2008, 47, 8639-8644.	3.7	6
85	Oxidation and mineralisation of substituted phenols by Fenton's reagent and catalytic wet oxidation. Water Science and Technology, 2007, 55, 37-45.	2.5	25
86	Decolorization of Textile Dyes by Wet Oxidation Using Activated Carbon as Catalyst. Industrial & Engineering Chemistry Research, 2007, 46, 2423-2427.	3.7	37
87	Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: Effect of H2O2 dosage and temperature. Journal of Hazardous Materials, 2007, 146, 595-601.	12.4	45
88	Hindered diffusion of proteins and polymethacrylates in controlled-pore glass: An experimental approach. Chemical Engineering Science, 2007, 62, 666-678.	3.8	10
89	Kinetic modelling of the thermal inactivation of an industrial β-galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology, 2006, 38, 1-9.	3.2	40
90	Thermal and pH inactivation of an immobilized thermostable β-galactosidase from Thermus sp. strain T2: Comparison to the free enzyme. Biochemical Engineering Journal, 2006, 31, 14-24.	3.6	50

#	Article	IF	CITATIONS
91	Reaction network and kinetic modeling of wet oxidation of phenol catalyzed by activated carbon. Chemical Engineering Science, 2006, 61, 2457-2467.	3.8	55
92	Wet oxidation of phenol, cresols and nitrophenols catalyzed by activated carbon in acid and basic media. Applied Catalysis B: Environmental, 2006, 65, 269-281.	20.2	75
93	Kinetic modelling of the thermal and pH inactivation of a thermostable β-galactosidase from Thermus sp. strain T2. Enzyme and Microbial Technology, 2005, 37, 505-513.	3.2	26
94	Catalytic wet oxidation of phenol on active carbon: stability, phenol conversion and mineralization. Catalysis Today, 2005, 102-103, 213-218.	4.4	55
95	Kinetic model of wet oxidation of phenol at basic pH using a copper catalyst. Chemical Engineering Science, 2005, 60, 4866-4878.	3.8	27
96	Study of the copper leaching in the wet oxidation of phenol with CuO-based catalysts: Causes and effects. Applied Catalysis B: Environmental, 2005, 61, 323-333.	20.2	139
97	Influence of pH on the wet oxidation of phenol with copper catalyst. Topics in Catalysis, 2005, 33, 181-192.	2.8	38
98	Generalized Kinetic Model for the Catalytic Wet Oxidation of Phenol Using Activated Carbon as the Catalyst. Industrial & Engineering Chemistry Research, 2005, 44, 3869-3878.	3.7	23
99	Lower toxicity route in catalytic wet oxidation of phenol at basic pH by using bicarbonate media. Applied Catalysis B: Environmental, 2004, 53, 181-194.	20.2	37
100	Evolution of Toxicity upon Wet Catalytic Oxidation of Phenol. Environmental Science & Technology, 2004, 38, 133-138.	10.0	148
101	Effect of Methyl-δ-valerolactams on the Quality of Îμ-Caprolactam. Industrial & Engineering Chemistry Research, 2004, 43, 1557-1560.	3.7	14
102	Hydrolysis of lactose by free and immobilized ?-galactosidase from Thermus sp. strain T2. Biotechnology and Bioengineering, 2003, 81, 241-252.	3.3	41
103	Dehydrogenation of Cyclohexanol to Cyclohexanone:Â Influence of Methylcyclopentanols on the Impurities Obtained in Îμ-Caprolactam. Industrial & Engineering Chemistry Research, 2003, 42, 3654-3661.	3.7	17
104	Kraft Pulping ofEucalyptusglobulus:Â Kinetics of Residual Delignification. Industrial & Engineering Chemistry Research, 2002, 41, 1955-1959.	3.7	10
105	Route of the catalytic oxidation of phenol in aqueous phase. Applied Catalysis B: Environmental, 2002, 39, 97-113.	20.2	253
106	Studies on the activity and the stability of β-galactosidases from Thermus sp strain T2 and from Kluyveromyces fragilis. Enzyme and Microbial Technology, 2002, 30, 392-405.	3.2	61
107	Catalytic Wet Oxidation of Phenol:Â Kinetics of Phenol Uptake. Environmental Science & Technology, 2001, 35, 2828-2835.	10.0	32
108	Catalytic Wet Oxidation of Phenol:Â Kinetics of the Mineralization Rate. Industrial & Engineering Chemistry Research, 2001, 40, 2773-2781.	3.7	36

AURORA SANTOS

#	Article	IF	CITATIONS
109	Activity over lactose and ONPG of a genetically engineered β-galactosidase from Escherichia coli in solution and immobilized: kinetic modelling. Enzyme and Microbial Technology, 2001, 29, 181-193.	3.2	42
110	Oxidation of phenol in aqueous solution with copper catalysts. Catalysis Today, 2001, 66, 511-517.	4.4	28
111	Diffusion and chemical reaction rates with nonuniform enzyme distribution: An experimental approach. Biotechnology and Bioengineering, 2001, 72, 458-467.	3.3	32
112	Influence of temperature and catalyst loading on the aqueous-phase catalytic oxidation of phenol. Studies in Surface Science and Catalysis, 2000, 130, 1769-1774.	1.5	4
113	Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology, 2000, 27, 583-592.	3.2	83
114	Organosolv Delignification of Eucalyptus globulus:  Kinetic Study of Autocatalyzed Ethanol Pulping. Industrial & Engineering Chemistry Research, 2000, 39, 34-39.	3.7	37
115	Overall rate of aqueous-phase catalytic oxidation of phenol: pH and catalyst loading influences. Catalysis Today, 1999, 48, 109-117.	4.4	34
116	Kinetics ofEucalyptus globulusDelignification in a Methanolâ^'Water Medium. Industrial & Engineering Chemistry Research, 1999, 38, 3324-3332.	3.7	26
117	Kinetic Modeling of Lactose Hydrolysis by a β-Galactosidase from Kluyveromices Fragilis. Enzyme and Microbial Technology, 1998, 22, 558-567.	3.2	101
118	Mass transfer influences on the design of selective catalytic reduction (SCR) monolithic reactors. Chemical Engineering and Processing: Process Intensification, 1998, 37, 117-124.	3.6	7
119	Kinetic Modeling of Kraft Delignification ofEucalyptus globulus. Industrial & Engineering Chemistry Research, 1997, 36, 4114-4125.	3.7	40
120	Measurement of the effective diffusivity for a vanadia-tungsta-titania/sepiolite catalyst for SCR of NOx. Applied Catalysis B: Environmental, 1996, 8, 299-314.	20.2	16
121	Coke effect in mass transport and morphology of Pt-Al2O3 and Ni-Mo-Al2O3 catalysts. AICHE Journal, 1996, 42, 524-531.	3.6	8
122	Liquid phase catalytic oxidation of aliphatic alcohols mixtures. Catalysis Today, 1995, 24, 59-64.	4.4	0
123	Direct test of adsorption enthalpy in 1-butene isomerization over a silica—alumina catalyst. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 60, 147-154.	0.1	0
124	Isomerization of 1-butene on silica-alumina: Kinetic modeling and catalyst deactivation. AICHE Journal, 1995, 41, 286-300.	3.6	15
125	Catalytic oxidation ofn-propanol in a multiphase upflow reactor: surface tension effects. Chemical Engineering Science, 1994, 49, 5699-5707.	3.8	5
126	Effective diffusivity under inert and reaction conditions. Chemical Engineering Science, 1994, 49, 3091-3102.	3.8	22

8

#	Article	IF	CITATIONS
127	Deactivation of a silica-alumina catalyst by coke deposition. Industrial & Engineering Chemistry Research, 1993, 32, 2626-2632.	3.7	10
128	Determination of deactivation kinetic parameters, I. Data from differential reactors. Reaction Kinetics and Catalysis Letters, 1989, 40, 157-162.	0.6	2
129	Determination of deactivation kinetic parameters, II. Data from integral reactors. Reaction Kinetics and Catalysis Letters, 1989, 40, 163-170.	0.6	3
130	HCH-Contaminated Soils and Remediation Technologies. , 0, , .		2