ZoltÃ;n Ivics

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6129813/publications.pdf

Version: 2024-02-01

		34105	3	36028	
141	10,635	52		97	
papers	citations	h-index		g-index	
150	150	150		7447	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Molecular Reconstruction of Sleeping Beauty, a Tc1-like Transposon from Fish, and Its Transposition in Human Cells. Cell, 1997, 91, 501-510.	28.9	1,302
2	Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nature Genetics, 2009, 41, 753-761.	21.4	800
3	Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nature Genetics, 2000, 25, 35-41.	21.4	491
4	Resident aliens: the $Tc1/mariner$ superfamily of transposable elements. Trends in Genetics, 1999, 15, 326-332.	6.7	441
5	Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature, 2014, 516, 405-409.	27.8	372
6	Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates 1 1Edited by J. Karn. Journal of Molecular Biology, 2000, 302, 93-102.	4.2	318
7	Transposon-mediated genome manipulation in vertebrates. Nature Methods, 2009, 6, 415-422.	19.0	280
8	Common Physical Properties of DNA Affecting Target Site Selection of Sleeping Beauty and other Tc1/mariner Transposable Elements. Journal of Molecular Biology, 2002, 323, 441-452.	4.2	247
9	Development of Hyperactive Sleeping Beauty Transposon Vectors by Mutational Analysis. Molecular Therapy, 2004, 9, 292-304.	8.2	217
10	Sleeping Beauty Transposition: Biology and Applications for Molecular Therapy. Molecular Therapy, 2004, 9, 147-156.	8.2	212
11	Comparative Analysis of Transposable Element Vector Systems in Human Cells. Molecular Therapy, 2010, 18, 1200-1209.	8.2	205
12	The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Research, 2003, 31, 6873-6881.	14.5	139
13	Involvement of a Bifunctional, Paired-like DNA-binding Domain and a Transpositional Enhancer in Sleeping BeautyTransposition. Journal of Biological Chemistry, 2002, 277, 34581-34588.	3.4	131
14	Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood, 2009, 114, 1461-1468.	1.4	130
15	The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition. Nucleic Acids Research, 2003, 31, 2313-2322.	14.5	128
16	Targeted Sleeping Beauty Transposition in Human Cells. Molecular Therapy, 2007, 15, 1137-1144.	8.2	126
17	Genome-wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4+ T Cells. Molecular Therapy, 2016, 24, 592-606.	8.2	122
18	Stable gene transfer and expression in cord blood–derived CD34+ hematopoietic stem and progenitor cells by a hyperactive Sleeping Beauty transposon system. Blood, 2009, 114, 1319-1330.	1.4	115

#	Article	IF	CITATIONS
19	The expanding universe of transposon technologies for gene and cell engineering. Mobile DNA, 2010, 1, 25.	3.6	113
20	Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nature Communications, 2016, 7, 10286.	12.8	113
21	The Ancient mariner Sails Again: Transposition of the Human Hsmar1 Element by a Reconstructed Transposase and Activities of the SETMAR Protein on Transposon Ends. Molecular and Cellular Biology, 2007, 27, 4589-4600.	2.3	111
22	Healing the Wounds Inflicted by Sleeping Beauty Transposition by Double-Strand Break Repair in Mammalian Somatic Cells. Molecular Cell, 2004, 13, 279-290.	9.7	108
23	Transposons for Gene Therapy!. Current Gene Therapy, 2006, 6, 593-607.	2.0	108
24	Germline Transgenic Pigs by Sleeping Beauty Transposition in Porcine Zygotes and Targeted Integration in the Pig Genome. PLoS ONE, 2011, 6, e23573.	2.5	108
25	Translating <i>Sleeping Beauty</i> transposition into cellular therapies: Victories and challenges. BioEssays, 2010, 32, 756-767.	2.5	105
26	Short Inverted-Repeat Transposable Elements in Teleost Fish and Implications for a Mechanism of Their Amplification. Journal of Molecular Evolution, 1999, 48, 13-21.	1.8	96
27	Generating knockout rats by transposon mutagenesis in spermatogonial stem cells. Nature Methods, 2010, 7, 443-445.	19.0	94
28	Gene Therapy with the Sleeping Beauty Transposon System. Trends in Genetics, 2017, 33, 852-870.	6.7	92
29	A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nature Communications, 2016, 7, 10716.	12.8	90
30	Hybrid Lentivirus-transposon Vectors With a Random Integration Profile in Human Cells. Molecular Therapy, 2009, 17, 1205-1214.	8.2	89
31	Transposonâ€mediated transgenesis, transgenic rescue, and tissueâ€specific gene expression in rodents and rabbits. FASEB Journal, 2013, 27, 930-941.	0.5	86
32	Self-assembled peptide–poloxamine nanoparticles enable in vitro and in vivo genome restoration for cystic fibrosis. Nature Nanotechnology, 2019, 14, 287-297.	31.5	86
33	Characterization of a Tc1-like transposable element in zebrafish (Danio rerio). Molecular Genetics and Genomics, 1995, 247, 312-322.	2.4	83
34	Transcriptional Activities of the Sleeping Beauty Transposon and Shielding Its Genetic Cargo With Insulators. Molecular Therapy, 2008, 16, 359-369.	8.2	82
35	Efficient stable gene transfer into human cells by the Sleeping Beauty transposon vectors. Methods, 2009, 49, 287-297.	3.8	82
36	Going non-viral: the <i>Sleeping Beauty</i> transposon system breaks on through to the clinical side. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 355-380.	5.2	77

#	Article	IF	CITATIONS
37	Derivation and Characterization of <i>Sleeping Beauty</i> Fransposon-Mediated Porcine Induced Pluripotent Stem Cells. Stem Cells and Development, 2013, 22, 124-135.	2.1	76
38	Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Research, 2013, 41, 1829-1847.	14.5	75
39	Comparative Genomic Integration Profiling of Sleeping Beauty Transposons Mobilized With High Efficacy From Integrase-defective Lentiviral Vectors in Primary Human Cells. Molecular Therapy, 2011, 19, 1499-1510.	8.2	73
40	Derivation and Characterization of Bovine Induced Pluripotent Stem Cells by Transposon-Mediated Reprogramming. Cellular Reprogramming, 2015, 17, 131-140.	0.9	70
41	Transcriptionally promiscuous "blurry―promoters in Tc1/mariner transposons allow transcription in distantly related genomes. Mobile DNA, 2019, 10, 13.	3.6	70
42	CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma. Gene Therapy, 2021, 28, 560-571.	4.5	70
43	Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nature Protocols, 2014, 9, 810-827.	12.0	67
44	Unique Functions of Repetitive Transcriptomes. International Review of Cell and Molecular Biology, 2010, 285, 115-188.	3.2	66
45	Transposons As Tools for Functional Genomics in Vertebrate Models. Trends in Genetics, 2017, 33, 784-801.	6.7	64
46	Transposition of a reconstructed <i>Harbinger</i> element in human cells and functional homology with two transposon-derived cellular genes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4715-4720.	7.1	63
47	A highly soluble Sleeping Beauty transposase improves control of gene insertion. Nature Biotechnology, 2019, 37, 1502-1512.	17.5	63
48	Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery. Nucleic Acids Research, 2011, 39, 7147-7160.	14.5	62
49	Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nature Protocols, 2014, 9, 794-809.	12.0	62
50	Retargeting Sleeping Beauty Transposon Insertions by Engineered Zinc Finger DNA-binding Domains. Molecular Therapy, 2012, 20, 1852-1862.	8.2	59
51	The mechanism of ageing: primary role of transposable elements in genome disintegration. Cellular and Molecular Life Sciences, 2015, 72, 1839-1847.	5.4	59
52	Nonviral Gene Delivery with the <i>Sleeping Beauty</i> Transposon System. Human Gene Therapy, 2011, 22, 1043-1051.	2.7	58
53	A reversible haploid mouse embryonic stem cell biobank resource for functional genomics. Nature, 2017, 550, 114-118.	27.8	58
54	Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic Acids Research, 2012, 40, 6693-6712.	14.5	57

#	Article	IF	CITATIONS
55	Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nature Protocols, 2014, 9, 773-793.	12.0	57
56	Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biology, 2007, 8, S1.	9.6	56
57	Applying a "Double-Feature―Promoter to Identify Cardiomyocytes Differentiated from Human Embryonic Stem Cells Following Transposon-Based Gene Delivery. Stem Cells, 2009, 27, 1077-1087.	3.2	55
58	Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. International Journal of Molecular Sciences, 2021, 22, 5084.	4.1	55
59	Efficient Non-viral Gene Delivery into Human Hematopoietic Stem Cells by Minicircle Sleeping Beauty Transposon Vectors. Molecular Therapy, 2018, 26, 1137-1153.	8.2	53
60	The Sleeping Beauty transposable element: evolution, regulation and genetic applications. Current Issues in Molecular Biology, 2004, 6, 43-55.	2.4	53
61	Sleeping Beauty transposase modulates cell-cycle progression through interaction with Miz-1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4062-4067.	7.1	52
62	Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering. Nature Communications, 2016, 7, 11126.	12.8	51
63	Transposable Elements for Transgenesis and Insertional Mutagenesis in Vertebrates: A Contemporary Review of Experimental Strategies., 2004, 260, 255-276.		44
64	RNA-guided retargeting of Sleeping Beauty transposition in human cells. ELife, 2020, 9, .	6.0	44
65	<i>Sleeping Beauty</i> Transposition. Microbiology Spectrum, 2015, 3, MDNA3-0042-2014.	3.0	43
66	Novel Hyperactive Transposons for Genetic Modification of Induced Pluripotent and Adult Stem Cells: A Nonviral Paradigm for Coaxed Differentiation. Stem Cells, 2010, 28, 1760-1771.	3.2	42
67	Precision genetic engineering in large mammals. Trends in Biotechnology, 2012, 30, 386-393.	9.3	41
68	Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites. Genome Research, 2015, 25, 1135-1146.	5.5	41
69	Non-viral therapeutic cell engineering with the Sleeping Beauty transposon system. Current Opinion in Genetics and Development, 2018, 52, 100-108.	3.3	41
70	<i>Sleeping Beauty</i> transposition: from biology to applications. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 18-44.	5.2	40
71	Non-viral reprogramming of fibroblasts into induced pluripotent stem cells by Sleeping Beauty and piggyBac transposons. Biochemical and Biophysical Research Communications, 2014, 450, 581-587.	2.1	39
72	The Piwiâ€pi <scp>RNA</scp> pathway: road to immortality. Aging Cell, 2017, 16, 906-911.	6.7	39

#	Article	IF	CITATIONS
73	Suicidal Autointegration of Sleeping Beauty and piggyBac Transposons in Eukaryotic Cells. PLoS Genetics, 2014, 10, e1004103.	3.5	37
74	One-step Multiplex Transgenesis via Sleeping Beauty Transposition in Cattle. Scientific Reports, 2016, 6, 21953.	3.3	35
75	Efficient Non-Viral T-Cell Engineering by <i>Sleeping Beauty < i>Minicircles Diminishing DNA Toxicity and miRNAs Silencing the Endogenous T-Cell Receptors. Human Gene Therapy, 2018, 29, 569-584.</i>	2.7	35
76	Integration Profile and Safety of an Adenovirus Hybrid-Vector Utilizing Hyperactive Sleeping Beauty Transposase for Somatic Integration. PLoS ONE, 2013, 8, e75344.	2.5	35
77	Choosing the Right Tool for Genetic Engineering: Clinical Lessons from Chimeric Antigen Receptor-T Cells. Human Gene Therapy, 2021, 32, 1044-1058.	2.7	35
78	The Sleeping Beauty Transposon Toolbox. Methods in Molecular Biology, 2012, 859, 229-240.	0.9	33
79	Genomic Analysis of Sleeping Beauty Transposon Integration in Human Somatic Cells. PLoS ONE, 2014, 9, e112712.	2.5	32
80	Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nature Protocols, 2016, 11, 327-346.	12.0	32
81	Regulated complex assembly safeguards the fidelity of <i>Sleeping Beauty </i> transposition. Nucleic Acids Research, 2017, 45, 311-326.	14.5	31
82	Targeted gene insertion for molecular medicine. Journal of Molecular Medicine, 2008, 86, 1205-1219.	3.9	30
83	Latest Advances for the <i>Sleeping Beauty</i> Transposon System: 23 Years of Insomnia but Prettier than Ever. BioEssays, 2020, 42, e2000136.	2.5	29
84	Sleeping Beauty transposon mutagenesis in rat spermatogonial stem cells. Nature Protocols, 2011, 6, 1521-1535.	12.0	28
85	Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer. Experimental Cell Research, 2012, 318, 2482-2489.	2.6	26
86	Efficient conditional and promoter-specific in vivo expression of cDNAs of choice by taking advantage of recombinase-mediated cassette exchange using FlEx gene traps. Nucleic Acids Research, 2010, 38, e106-e106.	14.5	25
87	Engineering of PEDF-Expressing Primary Pigment Epithelial Cells by the SB Transposon System Delivered by pFAR4 Plasmids. Molecular Therapy - Nucleic Acids, 2017, 6, 302-314.	5.1	24
88	Human Genome Editing in the Clinic: New Challenges in Regulatory Benefit-Risk Assessment. Cell Stem Cell, 2017, 21, 427-430.	11.1	24
89	Regulation of DNA transposition by CpG methylation and chromatin structure in human cells. Mobile DNA, 2013, 4, 15.	3.6	23
90	Liver-expressed <i>Cd302</i> and <i>Cr11</i> limit hepatitis C virus cross-species transmission to mice. Science Advances, 2020, 6, .	10.3	23

#	Article	IF	Citations
91	Multiple Invasions of Visitor, a DD41D Family of Tc1/mariner Transposons, throughout the Evolution of Vertebrates. Genome Biology and Evolution, 2020, 12, 1060-1073.	2.5	23
92	Sleeping Beauty transposon mutagenesis of the rat genome in spermatogonial stem cells. Methods, 2011, 53, 356-365.	3.8	22
93	TheSleeping Beautytransposon system for clinical applications. Expert Opinion on Biological Therapy, 2012, 12, 139-153.	3.1	22
94	Incomer, a DD36E family of Tc1/mariner transposons newly discovered in animals. Mobile DNA, 2019, 10, 45.	3.6	22
95	ERBB2-CAR-Engineered Cytokine-Induced Killer Cells Exhibit Both CAR-Mediated and Innate Immunity Against High-Risk Rhabdomyosarcoma. Frontiers in Immunology, 2020, 11, 581468.	4.8	22
96	Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. , 2022, 10, e003486.		21
97	The impact of transposable element activity on therapeutically relevant human stem cells. Mobile DNA, 2019, 10, 9.	3 . 6	18
98	Genotype-Independent Transmission of Transgenic Fluorophore Protein by Boar Spermatozoa. PLoS ONE, 2011, 6, e27563.	2.5	16
99	Cytoplasmic injection of murine zygotes with Sleeping Beauty transposon plasmids and minicircles results in the efficient generation of germline transgenic mice. Biotechnology Journal, 2016, 11, 178-184.	3.5	16
100	Wide Awake and Ready to Move: 20 Years of Non-Viral Therapeutic Genome Engineering with the Sleeping Beauty Transposon System. Human Gene Therapy, 2017, 28, 842-855.	2.7	16
101	Minicircle-Based Engineering of Chimeric Antigen Receptor (CAR) T Cells. Recent Results in Cancer Research, 2016, 209, 37-50.	1.8	15
102	Modulation of the functional association between the HIV-1 intasome and the nucleosome by histone amino-terminal tails. Retrovirology, 2017, 14, 54.	2.0	15
103	Intruder (DD38E), a recently evolved sibling family of DD34E/Tc1 transposons in animals. Mobile DNA, 2020, 11, 32.	3. 6	15
104	Brief Report: Impaired Cell Reprogramming in Nonhomologous End Joining Deficient Cells. Stem Cells, 2013, 31, 1726-1730.	3.2	14
105	Assessment of Fetal Cell Chimerism in Transgenic Pig Lines Generated by Sleeping Beauty Transposition. PLoS ONE, 2014, 9, e96673.	2.5	14
106	Endogenous Transposase Source in Human Cells Mobilizes piggyBac Transposons. Molecular Therapy, 2016, 24, 851-854.	8.2	14
107	Long-Term PEDF Release in Rat Iris and Retinal Epithelial Cells after Sleeping Beauty Transposon-Mediated Gene Delivery. Molecular Therapy - Nucleic Acids, 2017, 9, 1-11.	5.1	14
108	Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery. Redox Biology, 2020, 32, 101458.	9.0	14

#	Article	IF	Citations
109	Assessment of Fecundity and Germ Line Transmission in Two Transgenic Pig Lines Produced by Sleeping Beauty Transposition. Genes, 2012, 3, 615-633.	2.4	13
110	Establishment of cell-based transposon-mediated transgenesis in cattle. Theriogenology, 2016, 85, 1297-1311.e2.	2.1	13
111	Preclinical Evaluation of a Cell-Based Gene Therapy Using the Sleeping Beauty Transposon System in Choroidal Neovascularization. Molecular Therapy - Methods and Clinical Development, 2019, 15, 403-417.	4.1	13
112	Initial Hepatitis C Virus Infection of Adult Hepatocytes Triggers a Temporally Structured Transcriptional Program Containing Diverse Pro- and Antiviral Elements. Journal of Virology, 2021, 95,	3.4	13
113	The Flagellin:Allergen Fusion Protein rFlaA:Betv1 Induces a MyD88â^ and MAPK-Dependent Activation of Glucose Metabolism in Macrophages. Cells, 2021, 10, 2614.	4.1	13
114	Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery. Methods in Molecular Biology, 2016, 1400, 419-427.	0.9	12
115	The Antibiotic-free pFAR4 Vector Paired with the Sleeping Beauty Transposon System Mediates Efficient Transgene Delivery in Human Cells. Molecular Therapy - Nucleic Acids, 2018, 11, 57-67.	5.1	11
116	Sustained and regulated gene expression by Tet-inducible "all-in-one―retroviral vectors containing the HNRPA2B1-CBX3 UCOE®. Biomaterials, 2019, 192, 486-499.	11.4	11
117	A single amino acid switch converts the Sleeping Beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming. Nucleic Acids Research, 2020, 48, 316-331.	14.5	11
118	A native, highly active <i>Tc1/mariner</i> transposon from zebrafish (<i>ZB</i>) offers an efficient genetic manipulation tool for vertebrates. Nucleic Acids Research, 2021, 49, 2126-2140.	14.5	11
119	Specifically integrating vectors for targeted gene delivery: progress and prospects. Cell & Gene Therapy Insights, 2017, 3, 103-123.	0.1	11
120	A whole lotta jumpin' goin' on: new transposon tools for vertebrate functional genomics. Trends in Genetics, 2005, 21, 8-11.	6.7	10
121	Alterations in SCAI Expression during Cell Plasticity, Fibrosis and Cancer. Pathology and Oncology Research, 2018, 24, 641-651.	1.9	10
122	Jumping Ahead with Sleeping Beauty: Mechanistic Insights into Cut-and-Paste Transposition. Viruses, 2021, 13, 76.	3.3	10
123	Modulation of the intrinsic chromatin binding property of HIV-1 integrase by LEDGF/p75. Nucleic Acids Research, 2021, 49, 11241-11256.	14.5	9
124	Engineered <i>Sleeping Beauty</i> transposase redirects transposon integration away from genes. Nucleic Acids Research, 2022, 50, 2807-2825.	14.5	9
125	Persistence of infectious SARSâ€CoVâ€2 particles for up to 37Âdays in patients with mild COVIDâ€19. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2053-2066.	5.7	8
126	Non-Viral <i>Sleeping Beauty</i> Transposon Engineered CD19-CAR-NK Cells Show a Safe Genomic Integration Profile and High Antileukemic Efficiency. Blood, 2021, 138, 2797-2797.	1.4	8

ZOLTáN IVICS

#	Article	IF	Citations
127	Structural Determinants of Sleeping Beauty Transposase Activity. Molecular Therapy, 2016, 24, 1369-1377.	8.2	7
128	Identification and re-addressing of a transcriptionally permissive locus in the porcine genome. Transgenic Research, 2016, 25, 63-70.	2.4	7
129	Potent CAR-T cells engineered with Sleeping Beauty transposon vectors display a central memory phenotype. Gene Therapy, 2021, 28, 3-5.	4.5	7
130	Self-Destruct Genetic Switch to Safeguard iPS Cells. Molecular Therapy, 2015, 23, 1417-1420.	8.2	6
131	Evolution-guided evaluation of the inverted terminal repeats of the synthetic transposon Sleeping Beauty. Scientific Reports, 2019, 9, 1171.	3.3	5
132	Expression of Active Fluorophore Proteins in the Milk of Transgenic Pigs Bypassing the Secretory Pathway. Scientific Reports, 2016, 6, 24464.	3.3	4
133	Generation of CAR-T Cells with Sleeping Beauty Transposon Gene Transfer. Methods in Molecular Biology, 2022, , 41-66.	0.9	4
134	CD30 Receptor-Targeted Lentiviral Vectors for Human Induced Pluripotent Stem Cell-Specific Gene Modification. Stem Cells and Development, 2016, 25, 729-739.	2.1	3
135	Genome-wide mapping of binding sites of the transposase-derived SETMAR protein in the human genome. Computational and Structural Biotechnology Journal, 2021, 19, 4032-4041.	4.1	3
136	Gene Therapy "Made in Germany― A Historical Perspective, Analysis of the Status Quo, and Recommendations for Action by the German Society for Gene Therapy. Human Gene Therapy, 2021, 32, 987-996.	2.7	3
137	<i>Sleeping Beauty</i> Transposition., 0,, 851-872.		2
138	Evaluating different DNA binding domains to modulate L1 ORF2p-driven site-specific retrotransposition events in human cells. Gene, 2018, 642, 188-198.	2.2	2
139	Electroporation-Based Genetic Modification of Primary Human Pigment Epithelial Cells using the Sleeping Beauty Transposon System. Journal of Visualized Experiments, 2021, , .	0.3	2
140	Minicircles for CAR T Cell Production by Sleeping Beauty Transposition: A Technological Overview. Methods in Molecular Biology, 2022, , 25-39.	0.9	1
141	Genome Engineering Using Sleeping Beauty Transposition in Vertebrates. , 0, , 249-269.		O