Manuel Sanchez Polo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6129316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic Degradation of Organic Wastes in Water. Catalysts, 2022, 12, 114.	3.5	1
2	Carta del Director. Ars Pharmaceutica, 2022, 63, 111-113.	0.3	0
3	DIGITAL TEAMS FOR PURSUING EXCELLENCE IN ONLINE EDUCATION. , 2021, , .		0
4	Effect of operational parameters on photocatalytic degradation of ethylparaben using rGO/TiO2 composite under UV radiation. Environmental Research, 2021, 200, 111750.	7.5	12
5	Marble Waste Sludges as Effective Nanomaterials for Cu (II) Adsorption in Aqueous Media. Nanomaterials, 2021, 11, 2305.	4.1	6
6	Life Cycle Assessment of Cement Production with Marble Waste Sludges. International Journal of Environmental Research and Public Health, 2021, 18, 10968.	2.6	11
7	Removal of parabens from water by UV-driven advanced oxidation processes. Chemical Engineering Journal, 2020, 379, 122334.	12.7	59
8	Halide removal from water using silver doped magnetic-microparticles. Journal of Environmental Management, 2020, 253, 109731.	7.8	15
9	Degradation of the diuretic hydrochlorothiazide by UV/Solar radiation assisted oxidation processes. Journal of Environmental Management, 2020, 257, 109973.	7.8	13
10	Oxidation of sulfonamides by ferrate(VI): Reaction kinetics, transformation byproducts and toxicity assesment. Journal of Environmental Management, 2020, 255, 109927.	7.8	25
11	New Mussel Inspired Polydopamine-Like Silica-Based Material for Dye Adsorption. Nanomaterials, 2020, 10, 1416.	4.1	6
12	Photodegradation of antihistamine chlorpheniramine using a novel iron-incorporated carbon material and solar radiation. Environmental Science: Water Research and Technology, 2020, 6, 2607-2618.	2.4	6
13	Characteristics and Behavior of Different Catalysts Used for Water Decontamination in Photooxidation and Ozonation Processes. Catalysts, 2020, 10, 1485.	3.5	7
14	Hydrothermal Synthesis of rGO-TiO2 Composites as High-Performance UV Photocatalysts for Ethylparaben Degradation. Catalysts, 2020, 10, 520.	3.5	71
15	Solar Degradation of Sulfamethazine Using rGO/Bi Composite Photocatalysts. Catalysts, 2020, 10, 573.	3.5	13
16	Synthesis of controlled-size silver nanoparticles for the administration of methotrexate drug and its activity in colon and lung cancer cells. RSC Advances, 2020, 10, 10646-10660.	3.6	42
17	Methotrexate Gold Nanocarriers: Loading and Release Study: Its Activity in Colon and Lung Cancer Cells. Molecules, 2020, 25, 6049.	3.8	17
18	Waste marble dust: An interesting residue to produce cement. Construction and Building Materials, 2019, 224, 99-108.	7.2	32

#	Article	IF	CITATIONS
19	Understanding the effect of UV light in systems containing clay minerals and tetracycline. Applied Clay Science, 2019, 183, 105311.	5.2	17
20	Removal of bisphenols A and S by adsorption on activated carbon clothes enhanced by the presence of bacteria. Science of the Total Environment, 2019, 669, 767-776.	8.0	48
21	New Technologies to Remove Halides from Water: An Overview. Nanotechnology in the Life Sciences, 2019, , 147-180.	0.6	5
22	Comparative Study of the Oxidative Degradation of Different 4-Aminobenzene Sulfonamides in Aqueous Solution by Sulfite Activation in the Presence of Fe(0), Fe(II), Fe(III) Or Fe(VI). Water (Switzerland), 2019, 11, 2332.	2.7	12
23	Photocatalytic oxidation of diuron using nickel organic xerogel under simulated solar irradiation. Science of the Total Environment, 2019, 650, 1207-1215.	8.0	23
24	Role of the radical promoter systems on the degradation of an antipeleptic drug using HO and SO4- species. Journal of Water Process Engineering, 2019, 27, 162-170.	5.6	9
25	Adsorption mechanism and modelling of hydrocarbon contaminants onto rice straw activated carbons. Polish Journal of Chemical Technology, 2019, 21, 1-12.	0.5	14
26	Lanthanum-doped silica xerogels for the removal of fluorides from waters. Journal of Environmental Management, 2018, 213, 549-554.	7.8	18
27	Individual and simultaneous degradation of the antibiotics sulfamethoxazole and trimethoprim in aqueous solutions by Fenton, Fenton-like and photo-Fenton processes using solar and UV radiations. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 95-108.	3.9	53
28	Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: Kinetics, equilibrium and thermodynamic studies. Journal of Molecular Liquids, 2018, 256, 533-540.	4.9	61
29	Individual and simultaneous degradation of antibiotics sulfamethoxazole and trimethoprim by UV and solar radiation in aqueous solution using bentonite and vermiculite as photocatalysts. Applied Clay Science, 2018, 160, 217-225.	5.2	38
30	Tinidazole degradation assisted by solar radiation and iron-doped silica xerogels. Chemical Engineering Journal, 2018, 344, 21-33.	12.7	38
31	Influence of operational parameters on photocatalytic amitrole degradation using nickel organic xerogel under UV irradiation. Arabian Journal of Chemistry, 2018, 11, 564-572.	4.9	13
32	Sulfonamides degradation assisted by UV, UV/H2O2 and UV/K2S2O8: Efficiency, mechanism and byproducts cytotoxicity. Journal of Environmental Management, 2018, 225, 224-231.	7.8	45
33	Removal of Tetracyclines from Water by Adsorption/Bioadsorption and Advanced Oxidation Processes. A Short Review. Current Organic Chemistry, 2018, 22, 1005-1021.	1.6	24
34	Role of activated carbon surface chemistry in its photocatalytic activity and the generation of oxidant radicals under UV or solar radiation. Applied Catalysis B: Environmental, 2017, 207, 412-423.	20.2	86
35	Advanced Oxidation Processes based on the use of UVC and simulated solar radiation to remove the antibiotic tinidazole from water. Chemical Engineering Journal, 2017, 323, 605-617.	12.7	64
36	Halide removal from waters by silver nanoparticles and hydrogen peroxide. Science of the Total Environment, 2017, 607-608, 649-657.	8.0	23

#	Article	IF	CITATIONS
37	Removal of Antibiotics from Water by Adsorption/Biosorption on Adsorbents from Different Raw Materials. , 2017, , 139-204.		3
38	Role of oxygen-containing functional surface groups of activated carbons on the elimination of 2-hydroxybenzothiazole from waters in A hybrid heterogeneous ozonation system. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	1
39	Organic xerogels doped with Tris(2,2′-bipyridine) ruthenium(II) as hydroxyl radical promoters: Synthesis, characterization, and photoactivity. Chemical Engineering Journal, 2016, 306, 289-297.	12.7	12
40	Removal of compounds used as plasticizers and herbicides from water by means of gamma irradiation. Science of the Total Environment, 2016, 569-570, 518-526.	8.0	22
41	Role of 1 [O 2] â^— in chlortetracycline degradation by solar radiation assisted by ruthenium metal complexes. Chemical Engineering Journal, 2016, 284, 896-904.	12.7	16
42	Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. Journal of Environmental Management, 2016, 169, 116-125.	7.8	84
43	Oxidation of diatrizoate in aqueous phase by advanced oxidation processes based on solar radiation. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 319-320, 87-95.	3.9	21
44	Effect of radical peroxide promoters on the photodegradation of cytarabine antineoplastic in water. Chemical Engineering Journal, 2016, 284, 995-1002.	12.7	16
45	Photoactivity of organic xerogels and aerogels in the photodegradation of herbicides from waters. Applied Catalysis B: Environmental, 2016, 181, 94-102.	20.2	19
46	Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase. Chemical Engineering Research and Design, 2015, 104, 579-588.	5.6	52
47	Effect of HO, SO4â^ and CO3â^'/HCO3 radicals on the photodegradation of the herbicide amitrole by UV radiation in aqueous solution. Chemical Engineering Journal, 2015, 267, 182-190.	12.7	51
48	Adsorption of odorous sulfur compounds onto activated carbons modified by gamma irradiation. Journal of Colloid and Interface Science, 2015, 457, 78-85.	9.4	21
49	Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides. Science of the Total Environment, 2015, 537, 335-342.	8.0	31
50	Molecular imprinted polymer to remove tetracycline from aqueous solutions. Microporous and Mesoporous Materials, 2015, 203, 32-40.	4.4	36
51	Role of activated carbon on micropollutants degradation by different radiation processes. Mediterranean Journal of Chemistry, 2015, 4, 68-80.	0.7	8
52	Comparative study of oxidative degradation of sodium diatrizoate in aqueous solution by H2O2/Fe2+, H2O2/Fe3+, Fe (VI) and UV, H2O2/UV, K2S2O8/UV. Chemical Engineering Journal, 2014, 241, 504-512.	12.7	75
53	Cooperative adsorption of bisphenol-A and chromium(III) ions from water on activated carbons prepared from olive-mill waste. Carbon, 2014, 73, 338-350.	10.3	87
54	Role of activated carbon on micropollutans degradation by ionizing radiation. Carbon, 2014, 67, 288-299.	10.3	11

#	Article	IF	CITATIONS
55	Surface modifications of activated carbon by gamma irradiation. Carbon, 2014, 67, 236-249.	10.3	73
56	Photodegradation of herbicides with different chemical natures in aqueous solution by ultraviolet radiation. Effects of operational variables and solution chemistry. Chemical Engineering Journal, 2014, 255, 307-315.	12.7	31
57	Biogas Upgrading: Optimal Activated Carbon Properties for Siloxane Removal. Environmental Science & Technology, 2014, 48, 7187-7195.	10.0	102
58	Removal of the surfactant sodium dodecylbenzenesulfonate from water by processes based on adsorption/bioadsorption and biodegradation. Journal of Colloid and Interface Science, 2014, 418, 113-119.	9.4	47
59	Activated carbon as photocatalyst of reactions in aqueous phase. Applied Catalysis B: Environmental, 2013, 142-143, 694-704.	20.2	88
60	Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon). Science of the Total Environment, 2013, 442, 26-35.	8.0	91
61	Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon. Adsorption, 2013, 19, 945-957.	3.0	53
62	Degradation of Xâ€ray contrast media diatrizoate in different water matrices by gamma irradiation. Journal of Chemical Technology and Biotechnology, 2013, 88, 1336-1343.	3.2	26
63	Comparative study of the photodegradation of bisphenol A by HO, SO4â^' and CO3â^'/HCO3 radicals in aqueous phase. Science of the Total Environment, 2013, 463-464, 423-431.	8.0	120
64	Nitroimidazoles adsorption on activated carbon cloth from aqueous solution. Journal of Colloid and Interface Science, 2013, 401, 116-124.	9.4	38
65	Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. Journal of Environmental Management, 2013, 131, 16-24.	7.8	249
66	Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 2013, 93, 1268-1287.	8.2	1,122
67	Treatment of water contaminated with diphenolic acid by gamma radiation in the presence of different compounds. Chemical Engineering Journal, 2013, 219, 371-379.	12.7	33
68	Role of HO and <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>SO</mml:mtext></mml:mrow><mm /></mm </mml:msubsup></mml:mrow></mml:math> radicals on the photodegradation of remazol red in aqueous solution. Chemical Engineering Journal, 2013, 223, 155-163.	l:mrow><1 12.7	nm]:mn>4
69	Degradation of tetracyclines in different water matrices by advanced oxidation/reduction processes based on gamma radiation. Journal of Chemical Technology and Biotechnology, 2013, 88, 1096-1108.	3.2	78
70	Biodiesel production using calcium manganese oxide as catalyst and different raw materials. Energy Conversion and Management, 2013, 65, 647-653.	9.2	61
71	Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase. Chemical Engineering Journal, 2012, 213, 88-96.	12.7	154
72	Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies – A review. Journal of Environmental Management, 2012, 109, 164-178.	7.8	239

#	Article	IF	CITATIONS
73	Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon. Journal of Colloid and Interface Science, 2012, 385, 174-182.	9.4	76
74	Ionic X-ray contrast media degradation in aqueous solution induced by gamma radiation. Chemical Engineering Journal, 2012, 195-196, 369-376.	12.7	18
75	Role of activated carbon in the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid by the UV/TiO2/activated carbon system. Applied Catalysis B: Environmental, 2012, 126, 100-107.	20.2	33
76	Removal of surfactant dodecylbenzenesulfonate by consecutive use of ozonation and biodegradation. Engineering in Life Sciences, 2012, 12, 113-116.	3.6	24
77	Enhanced oxidation of sodium dodecylbenzenesulfonate aqueous solution using ozonation catalyzed by base treated zeolite. Chemical Engineering Journal, 2012, 180, 204-209.	12.7	16
78	Tetracycline degradation in aqueous phase by ultraviolet radiation. Chemical Engineering Journal, 2012, 187, 89-95.	12.7	109
79	Selection of heterogeneous catalysts for biodiesel production from animal fat. Fuel, 2012, 94, 418-425.	6.4	86
80	Adsorption/bioadsorption of phthalic acid, an organic micropollutant present in landfill leachates, on activated carbons. Journal of Colloid and Interface Science, 2012, 369, 358-365.	9.4	52
81	Optimization of the preparation process of biological sludge adsorbents for application in water treatment. Journal of Hazardous Materials, 2012, 217-218, 76-84.	12.4	46
82	Metronidazole photodegradation in aqueous solution by using photosensitizers and hydrogen peroxide. Journal of Chemical Technology and Biotechnology, 2012, 87, 1202-1208.	3.2	28
83	Photodegradation of the antibiotics nitroimidazoles in aqueous solution by ultraviolet radiation. Water Research, 2011, 45, 393-403.	11.3	108
84	Impacto del tratamiento con ozono sobre las propiedades superficiales del carbón activado. Ingeniare, 2011, 19, 174-185.	0.3	3
85	Degradation of antineoplastic cytarabine in aqueous solution by gamma radiation. Chemical Engineering Journal, 2011, 174, 1-8.	12.7	56
86	Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation. Chemical Engineering Journal, 2011, 178, 115-121.	12.7	176
87	Adsorbent-adsorbate interactions in the adsorption of organic andÂinorganic species on ozonized activated carbons: aÂshortÂreview. Adsorption, 2011, 17, 611-620.	3.0	16
88	Enhancement of the catalytic activity of TiO2 by using activated carbon in the photocatalytic degradation of cytarabine. Applied Catalysis B: Environmental, 2011, 104, 177-184.	20.2	48
89	Activated carbon modifications to enhance its water treatment applications. An overview. Journal of Hazardous Materials, 2011, 187, 1-23.	12.4	467
90	Removal of tinidazole from waters by using ozone and activated carbon in dynamic regime. Journal of Hazardous Materials, 2010, 174, 880-886.	12.4	49

#	Article	IF	CITATIONS
91	Photodegradation of tetracyclines in aqueous solution by using UV and UV/H ₂ O ₂ oxidation processes. Journal of Chemical Technology and Biotechnology, 2010, 85, 1325-1333.	3.2	222
92	Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase. Journal of Colloid and Interface Science, 2010, 345, 481-490.	9.4	117
93	Kinetic modeling of fluoride adsorption from aqueous solution onto bone char. Chemical Engineering Journal, 2010, 158, 458-467.	12.7	140
94	Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals. Chemical Engineering Journal, 2010, 163, 300-306.	12.7	97
95	Modeling adsorption rate of pyridine onto granular activated carbon. Chemical Engineering Journal, 2010, 165, 133-141.	12.7	94
96	Degradation of antineoplastic cytarabine in aqueous phase by advanced oxidation processes based on ultraviolet radiation. Chemical Engineering Journal, 2010, 165, 581-588.	12.7	51
97	A convenient antibiotic indicator in the ozone treatment of wastewaters. An experimental and theoretical study. New Journal of Chemistry, 2010, 34, 2205.	2.8	3
98	Influence of presence of tannic acid on removal of sodium dodecylbenzenesulphonate by O ₃ and advanced oxidation processes. Journal of Chemical Technology and Biotechnology, 2009, 84, 367-375.	3.2	5
99	Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. Journal of Hazardous Materials, 2009, 170, 298-305.	12.4	257
100	Effectiveness of different oxidizing agents for removing sodium dodecylbenzenesulphonate in aqueous systems. Water Research, 2009, 43, 1621-1629.	11.3	22
101	Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Research, 2009, 43, 4028-4036.	11.3	144
102	Kinetic Modelling of Naphthalenesulphonic Acid Adsorption from Aqueous Solution onto Untreated and Ozonated Activated Carbons. Adsorption Science and Technology, 2009, 27, 395-411.	3.2	8
103	Adsorption of sodium dodecylbenzenesulfonate on activated carbons: Effects of solution chemistry and presence of bacteria. Journal of Colloid and Interface Science, 2008, 317, 11-17.	9.4	60
104	Behavior of two different constituents of natural organic matter in the removal of sodium dodecylbenzenesulfonate by O3 and O3-based advanced oxidation processes. Journal of Colloid and Interface Science, 2008, 325, 432-439.	9.4	15
105	Metal-Doped Carbon Aerogels. New Materials for Water Treatments. Industrial & Engineering Chemistry Research, 2008, 47, 6001-6005.	3.7	17
106	Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system. Water Research, 2008, 42, 4163-4171.	11.3	112
107	Ag-doped carbon aerogels for removing halide ions in water treatment. Water Research, 2007, 41, 1031-1037.	11.3	69
108	Photooxidation of naphthalenesulfonic acids: Comparison between processes based on O3, O3/activated carbon and UV/H2O2. Chemosphere, 2007, 68, 1814-1820.	8.2	21

#	Article	IF	CITATIONS
109	Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. Journal of Environmental Management, 2007, 85, 833-846.	7.8	810
110	Bromide and iodide removal from waters under dynamic conditions by Ag-doped aerogels. Journal of Colloid and Interface Science, 2007, 306, 183-186.	9.4	23
111	Ozonation of naphthalenetrisulphonic acid in the presence of activated carbons prepared from petroleum coke. Applied Catalysis B: Environmental, 2006, 67, 113-120.	20.2	31
112	Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: Comparison with systems based on O3 and O3/H2O2. Water Research, 2006, 40, 1717-1725.	11.3	62
113	Metal-doped carbon aerogels as catalysts during ozonation processes in aqueous solutions. Water Research, 2006, 40, 3375-3384.	11.3	58
114	Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels. Journal of Colloid and Interface Science, 2006, 300, 437-441.	9.4	68
115	Photooxidation of naphthalenesulphonic acids in presence of transition metal-doped carbon aerogels. Applied Catalysis B: Environmental, 2006, 69, 93-100.	20.2	10
116	Combination of Ozone with Activated Carbon as an Alternative to Conventional Advanced Oxidation Processes. Ozone: Science and Engineering, 2006, 28, 237-245.	2.5	62
117	Kinetics of 1,3,6-naphthalenetrisulphonic acid ozonation in presence of activated carbon. Carbon, 2005, 43, 962-969.	10.3	55
118	Ozonation in aqueous phase of sodium dodecylbenzenesulphonate in the presence of powdered activated carbon. Carbon, 2005, 43, 3031-3034.	10.3	5
119	Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters. Water Research, 2005, 39, 3189-3198.	11.3	265
120	Ozonation of 1,3,6-naphthalenetrisulfonic acid in presence of heavy metals. Journal of Chemical Technology and Biotechnology, 2004, 79, 902-909.	3.2	29
121	Ozonation of Naphthalenesulphonic Acid in the Aqueous Phase in the Presence of Basic Activated Carbons. Langmuir, 2004, 20, 9217-9222.	3.5	80
122	Effect of the ozone–carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone. Carbon, 2003, 41, 303-307.	10.3	96
123	Degradation and removal of naphthalenesulphonic acids by means of adsorption and ozonation catalyzed by activated carbon in water. Water Resources Research, 2003, 39, .	4.2	15
124	Adsorption of 1,3,6-Naphthalenetrisulfonic Acid on Activated Carbon in the Presence of Cd(II), Cr(III), and Hg(II). Importance of Electrostatic Interactions. Langmuir, 2003, 19, 10857-10861.	3.5	23
125	Adsorption of Cr(III) on ozonised activated carbon. Importance of Cπ—cation interactions. Water Research, 2003, 37, 3335-3340.	11.3	149
126	Adsorbentâ^'Adsorbate Interactions in the Adsorption of Cd(II) and Hg(II) on Ozonized Activated Carbons. Environmental Science & Amp; Technology, 2002, 36, 3850-3854.	10.0	190

#	Article	IF	CITATIONS
127	Degradation of naphthalenesulfonic acids by oxidation with ozone in aqueous phase. Physical Chemistry Chemical Physics, 2002, 4, 1129-1134.	2.8	35
128	Effect of Ozone Treatment on Surface Properties of Activated Carbon. Langmuir, 2002, 18, 2111-2116.	3.5	385
129	Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase. Applied Catalysis B: Environmental, 2002, 39, 319-329.	20.2	187
130	Advanced oxidation with ozone of 1,3,6-naphthalenetrisulfonic acid in aqueous solution. Journal of Chemical Technology and Biotechnology, 2002, 77, 148-154.	3.2	22
131	Effect of ozone and ozone/activated carbon treatments on genotoxic activity of naphthalenesulfonic acids. Journal of Chemical Technology and Biotechnology, 2002, 77, 883-890.	3.2	34
132	Study of different normal-microemulsion compositions by room-temperature phosphorescence to determine benzo[a]pyrene in environmental samples. Analytica Chimica Acta, 2002, 474, 91-98.	5.4	5
133	The role of dispersive and electrostatic interactions in the aqueous phase adsorption of nanhthalenesulphonic acids on ozone-treated activated carbons. Carbon, 2002, 40, 2685-2691	10.3	60