
## Krishna Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6129308/publications.pdf Version: 2024-02-01



Кріснил Снан

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Importance of a Moving Boundary Approach for Modeling the SEI Layer Growth to Predict<br>Capacity Fade. Journal of the Electrochemical Society, 2022, 169, 040548.                                                      | 2.9 | 1         |
| 2  | A General Three-Dimensional Electrochemical-Thermal Modeling Framework to Study Large-Format<br>Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 1214-1214.                                                               | 0.0 | 1         |
| 3  | Investigation of the Impact of Flow of Vented Gas on Propagation of Thermal Runaway in a Li-Ion<br>Battery Pack. Journal of the Electrochemical Society, 2021, 168, 060555.                                                 | 2.9 | 33        |
| 4  | Perspective—Mass Conservation in Models for Electrodeposition/Stripping in Lithium Metal Batteries.<br>Journal of the Electrochemical Society, 2021, 168, 092502.                                                           | 2.9 | 6         |
| 5  | Investigation of the Impact of Radiative Shielding by Internal Partitions Walls on Propagation of<br>Thermal Runaway in a Matrix of Cylindrical Li-Ion Cells. Journal of the Electrochemical Society, 2021,<br>168, 120507. | 2.9 | 8         |
| 6  | Editors' Choice—Perspective—Challenges in Moving to Multiscale Battery Models: Where<br>Electrochemistry Meets and Demands More from Math. Journal of the Electrochemical Society, 2020,<br>167, 133501.                    | 2.9 | 12        |
| 7  | Prediction of thermal runaway and thermal management requirements in cylindrical Liâ€ion cells in realistic scenarios. International Journal of Energy Research, 2019, 43, 1827-1838.                                       | 4.5 | 23        |
| 8  | Conjugate Heat Transfer Analysis of Thermal Management of a Li-Ion Battery Pack. Journal of<br>Electrochemical Energy Conversion and Storage, 2018, 15, .                                                                   | 2.1 | 34        |
| 9  | A Comprehensive Parametric Study of Minichannel Based Liquid Cooling of Li-Ion Battery Pack. , 2018, , .                                                                                                                    |     | 0         |
| 10 | Measurements and modeling to determine the critical temperature for preventing thermal runaway in<br>Li-ion cells. Applied Thermal Engineering, 2018, 145, 287-294.                                                         | 6.0 | 57        |
| 11 | Measurement Sensitivity Analysis of the Transient Hot Source Technique Applied to Flat and Cylindrical Samples. Journal of Thermal Science and Engineering Applications, 2017, 9, .                                         | 1.5 | 2         |
| 12 | An experimentally validated method for temperature prediction during cyclic operation of a Li-ion cell. International Journal of Heat and Mass Transfer, 2017, 112, 89-96.                                                  | 4.8 | 24        |
| 13 | Measurement of Multiscale Thermal Transport Phenomena in Li-Ion Cells: A Review. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .                                                                      | 2.1 | 58        |
| 14 | Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells. Journal of Power Sources, 2016, 330, 167-174.                                                                                 | 7.8 | 110       |
| 15 | An iterative, analytical method for solving conjugate heat transfer problems. International Journal of Heat and Mass Transfer, 2015, 90, 1232-1240.                                                                         | 4.8 | 12        |
| 16 | An experimentally validated transient thermal model for cylindrical Li-ion cells. Journal of Power<br>Sources, 2014, 271, 262-268.                                                                                          | 7.8 | 43        |