
Olivier Chauvet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6128721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macroporous hybrid Pickering foams based on carbon nanotubes and cellulose nanocrystals. Journal of Colloid and Interface Science, 2019, 544, 78-87.	5.0	30
2	Carbon Nanotube/Cellulose Nanocrystal Hybrid Conducting Thin Films. Journal of Renewable Materials, 2017, , .	1.1	0
3	Highly Efficient and Predictable Noncovalent Dispersion of Single-Walled and Multi-Walled Carbon Nanotubes by Cellulose Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 22694-22701.	1.5	48
4	Synthesis and characterization of Fe3O4@ZnS and Fe3O4@Au@ZnS core–shell nanoparticles. Applied Surface Science, 2014, 288, 180-192.	3.1	51
5	Energy Transfer from C-Phycocyanin to Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 5159-5163.	1.5	4
6	Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide. Journal of Materials Science: Materials in Medicine, 2013, 24, 1875-1884.	1.7	47
7	pH-Sensitive Photoinduced Energy Transfer from Bacteriorhodopsin to Single-Walled Carbon Nanotubes in SWNT–bR Hybrids. ACS Nano, 2013, 7, 8743-8752.	7.3	7
8	Synthesis and characterization of Fe–Pt based multishell magnetic nanoparticles. Journal of Alloys and Compounds, 2013, 574, 477-485.	2.8	18
9	A green Li–organic battery working as a fuel cell in case of emergency. Energy and Environmental Science, 2013, 6, 2124.	15.6	103
10	Prediction of the transparency in the visible range of x-ray absorbing nanocomposites built upon the assembly of LaF_3 or LaPO_4 nanoparticles with poly(methyl methacrylate). Journal of the Optical Society of America B: Optical Physics, 2012, 29, 305.	0.9	4
11	Cellulose Nanocrystal-Assisted Dispersion of Luminescent Single-Walled Carbon Nanotubes for Layer-by-Layer Assembled Hybrid Thin Films. Langmuir, 2012, 28, 12463-12471.	1.6	123
12	Interface charge transfer in polypyrrole coated perovskite manganite magnetic nanoparticles. Journal of Applied Physics, 2012, 111, .	1.1	14
13	Ionic and electronic conductivities in carbon nanotubes – ionogel solid device. Journal of Materials Chemistry, 2011, 21, 2508-2511.	6.7	26
14	Quenching of Photoactivity in Phthalocyanine Copper(II) -Titanate Nanotube Hybrid Systems. Journal of Physical Chemistry C, 2011, 115, 12082-12089.	1.5	11
15	Comparative study of core–shell iron/iron oxide gold covered magnetic nanoparticles obtained in different conditions. Journal of Nanoparticle Research, 2011, 13, 6181-6192.	0.8	23
16	Conformational Structural Changes of Bacteriorhodopsin Adsorbed onto Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2010, 114, 4345-4350.	1.2	23
17	Kinetic studies of a composite carbon nanotube-hydrogel for tissue engineering by rheological methods. Journal of Materials Science: Materials in Medicine, 2010, 21, 1163-1168.	1.7	13
18	Single walled nanotubes/amylose/SDBS complex. Journal of Nanoparticle Research, 2010, 12, 545-550.	0.8	8

#	Article	IF	CITATIONS
19	The 2C putative helicase of echovirus 30 adopts a hexameric ring-shaped structure. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1116-1120.	2.5	17
20	Coaxial nickel/poly(p-phenylene vinylene) nanowires as luminescent building blocks manipulated magnetically. Nanotechnology, 2009, 20, 405601.	1.3	23
21	Carboxymethylcellulose/Single Walled Carbon Nanotube Complexes. Journal of Nanoscience and Nanotechnology, 2009, 9, 6176-6180.	0.9	21
22	Photophysical comparative study of amylose and polyvinyle pyrrolidone/single walled carbon nanotubes complex. Physical Chemistry Chemical Physics, 2009, 11, 8626.	1.3	3
23	Electricâ€Pulseâ€driven Electronic Phase Separation, Insulator–Metal Transition, and Possible Superconductivity in a Mott Insulator. Advanced Materials, 2008, 20, 2760-2765.	11.1	70
24	Electric-pulse-induced resistive switching and possible superconductivity in the Mott insulator GaTa4Se8. Microelectronic Engineering, 2008, 85, 2430-2433.	1.1	28
25	Polypyrrole coated magnetite nanoparticles from water based nanofluids. Journal Physics D: Applied Physics, 2008, 41, 245002.	1.3	51
26	Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters, 2007, 91, .	1.5	260
27	Structure, morphology and magnetic properties of Fe–Au core-shell nanoparticles. Surface Science, 2007, 601, 4352-4357.	0.8	34
28	Amylose/SWNT composites: From solution to film – Synthesis, characterization and properties. Composites Science and Technology, 2007, 67, 817-821.	3.8	22
29	Solid-State NMR Study of Na versus K Doping ofpara-Phenylene Oligomers. Journal of Physical Chemistry B, 2006, 110, 743-747.	1.2	5
30	Dielectric breakdown and current switching effect in the incommensurate layered compound(LaS)1.196VS2. Physical Review B, 2006, 73, .	1.1	20
31	Determination of the modulated structure of the misfit layer compound (LaS)1.196VS2. Materials Research Bulletin, 2005, 40, 125-133.	2.7	14
32	Soluble Self-Aligned Carbon Nanotube/Polyaniline Composites. Advanced Materials, 2005, 17, 278-281.	11.1	171
33	SERS, FT-IR and photoluminescence studies on single-walled carbon nanotubes/conducting polymers composites. Synthetic Metals, 2005, 155, 666-669.	2.1	15
34	Functionalization of single-walled carbon nanotubes with conducting polymers evidenced by Raman and FTIR spectroscopy. Diamond and Related Materials, 2005, 14, 867-872.	1.8	57
35	Electrochemical and vibrational properties of single-walled carbon nanotubes in hydrochloric acid solutions. Diamond and Related Materials, 2005, 14, 873-880.	1.8	18
36	A soluble and highly functional polyaniline–carbon nanotube composite. Nanotechnology, 2005, 16, S150-S154.	1.3	94

#	Article	IF	CITATIONS
37	Magnetoelastic polarons in the hole-doped quasi-one-dimensional model systemY2â^'xCaxBaNiO5. Physical Review B, 2004, 70, .	1.1	1
38	Raman Studies of Carbon Nanotubes and Polymer Nanotube Composites. Molecular Crystals and Liquid Crystals, 2004, 415, 125-132.	0.4	15
39	SERS spectra of Polyaniline/carbon nanotubes and Polyaniline/fullerene composites. Molecular Crystals and Liquid Crystals, 2004, 415, 141-155.	0.4	8
40	Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization. Carbon, 2004, 42, 3143-3152.	5.4	102
41	Growth mechanisms of carbon nanotubes converted from diamond-like carbon films. Chemical Physics Letters, 2004, 397, 516-519.	1.2	3
42	Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes. Carbon, 2004, 42, 949-952.	5.4	42
43	Effects of the Confined Synthesis on Conjugated Polymer Transport Properties. Journal of Physical Chemistry B, 2004, 108, 18552-18556.	1.2	70
44	SERS spectroscopy studies on the electrochemical oxidation of single-walled carbon nanotubes in sulfuric acid solutions. Synthetic Metals, 2004, 144, 133-142.	2.1	23
45	Synthesis And Characterization of Carbon Nanotubes/Amylose Composites. AIP Conference Proceedings, 2004, , .	0.3	0
46	Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation. Carbon, 2003, 41, 2247-2256.	5.4	333
47	Synthesis and characterization of new polyaniline/nanotube composites. Materials Science and Engineering C, 2003, 23, 87-91.	3.8	105
48	Polyaniline and Carbon Nanotubes Based Composites Containing Whole Units and Fragments of Nanotubes. Chemistry of Materials, 2003, 15, 4149-4156.	3.2	232
49	Physical properties of conducting polymer nanofibers. Synthetic Metals, 2003, 135-136, 329-330.	2.1	21
50	Study of interactions in carbon nanotubes systems by using Raman and SERS spectroscopy. Synthetic Metals, 2003, 139, 783-785.	2.1	25
51	Evidence of electron-hole symmetry breaking in poly(p-phenylene vinylene). Physical Review B, 2003, 68, ·	1.1	12
52	Modifications of single-wall carbon nanotubes upon oxidative purification treatments. Nanotechnology, 2003, 14, 691-695.	1.3	102
53	Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites. Physical Review B, 2002, 65, .	1.1	103
54	Raman spectroscopy and conductivity measurements on polymer-multiwalled carbon nanotubes composites. Journal of Materials Research, 2002, 17, 396-400.	1.2	80

#	Article	IF	CITATIONS
55	Modification of surface-enhanced Raman scattering spectra of single-walled carbon nanotubes as a function of nanotube film thickness. Physical Review B, 2002, 65, .	1.1	48
56	Low-frequency Raman studies of multiwalled carbon nanotubes: Experiments and theory. Physical Review B, 2002, 66, .	1.1	104
57	Microwave single walled carbon nanotubes purification. Chemical Communications, 2002, , 1000-1001.	2.2	65
58	ETUDE SPECTROMETRIQUE DE LA LAZURITE DU PAMIR, TAJIKISTAN. Canadian Mineralogist, 2002, 40, 885-893.	0.3	31
59	C60–polymer nanocomposites: evidence for interface interaction. Carbon, 2002, 40, 1565-1574.	5.4	34
60	Coalescence of single-walled carbon nanotubes and formation of multi-walled carbon nanotubes under high-temperature treatments. Carbon, 2002, 40, 1765-1773.	5.4	102
61	SERS studies on single-walled carbon nanotubes submitted to chemical transformation with sulfuric acid. Carbon, 2002, 40, 2201-2211.	5.4	34
62	Synthesis of a new polyaniline/nanotube composite: "in-situ―polymerisation and charge transfer through site-selective interaction. Chemical Communications, 2001, , 1450-1451.	2.2	457
63	SERS studies on disordered carbon nanotube thin films. Synthetic Metals, 2001, 121, 1199-1200.	2.1	7
64	Transport properties of PMMA-Carbon Nanotubes composites. Synthetic Metals, 2001, 121, 1215-1216.	2.1	150
65	Electronic structure of a hole doped oxide with a quasi-1D crystal structure Y2â^'x(Sr,Ca)xBaNiO5. Journal of Alloys and Compounds, 2001, 317-318, 149-152.	2.8	9
66	On the Origin of the × Superstructure and the Anomalous Magnetic and Transport Properties of the Layered Compound Sr6V9S22O2. Inorganic Chemistry, 2001, 40, 2898-2904.	1.9	16
67	High Internal Stresses in Sr1-xLa1+xAl1-xMgxO4Solid Solution (0 ≤≤0.7) Characterized by Infrared and Raman Spectroscopies Coupled with Crystal Structure Refinement. Chemistry of Materials, 2001, 13, 3893-3898.	3.2	42
68	Electric Transport Properties and Percolation in Carbon Nanotubes / PMMA Composites. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	12
69	Calculations of interactions in single-walled and multi-walled carbon nanotubes. AIP Conference Proceedings, 2001, , .	0.3	0
70	Carbon nanotubes and nanostructures grown from diamond-like carbon and polyethylene. Applied Physics A: Materials Science and Processing, 2001, 73, 765-768.	1.1	27
71	Spectroelectrochemical studies of the C14-alkyl derivative of poly(3,4-ethylenedioxythiophene) (PEDT). Electrochimica Acta, 2001, 46, 1207-1214.	2.6	25
	Electrochemical and spectroelectrochemical behavior of		

3,4′,4″,4â€′-tetraoctyl-5â€′-chloro-2,2′:5′,2″:5″,2â€′-quaterthiophene — a short chain model compound for8 regioregular poly(3-alkylthiophene). Journal of Electroanalytical Chemistry, 2001, 501, 166-172.

#	Article	IF	CITATIONS
73	Two new organic–inorganic complexes associating the radical anion ABTS·– and the inorganic cation Ca2+: Ca0.55(ABTS)(H2O)x and Ca5(ABTS)6(H2O)29. Solid State Sciences, 2001, 3, 715-725.	1.5	6
74	Band structure and electronic properties of the incommensurate misfit compound. Journal of Physics Condensed Matter, 1999, 11, 2887-2900.	0.7	12
75	Studies on structural properties of amorphous nitrogenated carbon films from electron energy loss, ellipsometry, Auger electron spectroscopy, and electron-spin resonance. Journal of Applied Physics, 1999, 85, 2162-2169.	1.1	60
76	Electronic properties of the (las)1.18vs2 incommensurate misfit compound Synthetic Metals, 1999, 103, 2640-2643.	2.1	9
77	EPR study of regioregular poly(3-hexylthiophene). Synthetic Metals, 1999, 101, 358.	2.1	2
78	Ferromagnetic Clusters and Magnetic Polarons as Evidenced by ESR in La1.35Sr1.65Mn2O7. Physical Review Letters, 1998, 81, 1102-1105.	2.9	58
79	Chemically n-doped parasexiphenyl: a model compound of polyparaphenylene studied by ESR. Synthetic Metals, 1997, 84, 657-658.	2.1	2
80	Preparation of Poly(isothianaphthene) from 2,5-Bis(trialkylsilyl)isothianaphthenes. Synthetic Metals, 1997, 84, 413-414.	2.1	2
81	Electronic properties of aligned carbon nanotubes. Synthetic Metals, 1997, 86, 2311-2312.	2.1	7
82	Raman studies of C60, phototransformed C60 and AC60 phases. Synthetic Metals, 1997, 86, 2325-2326.	2.1	1
83	Muon spin relaxation measurements of CsC60, RbC60, KC60. , 1997, 104, 325-329.		3
84	Transport properties, thermodynamic properties, and electronic structure ofSrRuO3. Physical Review B, 1996, 53, 4393-4398.	1.1	418
85	Temperature dependence of electron spin resonance in amorphous carbon films. Journal of Non-Crystalline Solids, 1996, 198-200, 646-648.	1.5	4
86	ESR study of potassium-doped aligned carbon nanotubes. Physical Review B, 1996, 53, 13996-13999.	1.1	32
87	Longitudinal electron-spin relaxation in RbC60. Solid State Communications, 1996, 98, 977-980.	0.9	2
88	Microstructure Evolution and Defect Incorporation in Highly Oriented and Textured CVD Diamond Films. Physica Status Solidi A, 1996, 154, 219-238.	1.7	50
89	Phase selection and transformation kinetics inKC60. Physical Review B, 1996, 54, 11865-11868.	1.1	1
90	Spin susceptibility of boron carbides: Dissociation of singlet small bipolarons. Physical Review B, 1996, 53, 14450-14457.	1.1	23

#	Article	IF	CITATIONS
91	Raman study of the polymerized state ofRbC60andCsC60. Physical Review B, 1996, 54, 14139-14145.	1.1	15
92	Magnetic properties of the anatase phase of TiO2. Solid State Communications, 1995, 93, 667-669.	0.9	25
93	Distribution of K ions in intermediateKC60. Physical Review B, 1995, 52, 3199-3205.	1.1	23
94	Polymeric alkali fullerides are stable in air. Applied Physics Letters, 1995, 66, 1015-1017.	1.5	26
95	Static magnetic order in the one-dimensional conductorRbC60. Physical Review B, 1995, 52, R6991-R6994.	1.1	44
96	Dimerization inKC60andRbC60. Physical Review B, 1995, 51, 12228-12232.	1.1	106
97	Metallic conductivity and metal-insulator transition in (AC60)n(A=K, Rb, and Cs) linear polymer fullerides. Physical Review B, 1995, 51, 14794-14797.	1.1	117
98	Magnetic anisotropies of aligned carbon nanotubes. Physical Review B, 1995, 52, R6963-R6966.	1.1	123
99	Conduction electron spin resonance in Rb1C60 and Rb3C60. Synthetic Metals, 1995, 70, 1333-1336.	2.1	5
100	Triplet Bipolarons in Disordered Conducting Polymers: An ESR Study. Europhysics Letters, 1994, 26, 619-624.	0.7	19
101	Jánossyet al. reply. Physical Review Letters, 1994, 72, 3131-3131.	2.9	2
102	Quasi-one-dimensional electronic structure in orthorhombicRbC60. Physical Review Letters, 1994, 72, 2721-2724.	2.9	329
103	Optical and electrical properties of evaporated 2,5â€bisâ€methylthioâ€7,7',8,8'â€ŧetracyanoquinodimetl Journal of Applied Physics, 1994, 76, 1824-1829.	hane. 1.1	5
104	Single-Crystalline (KC60)n: A Conducting Linear Alkali Fulleride Polymer. Science, 1994, 265, 1077-1078.	6.0	213
105	High mobilitynâ€ŧype charge carriers in large single crystals of anatase (TiO2). Journal of Applied Physics, 1994, 75, 633-635.	1.1	480
106	The response of pyrolysed Kapton in the gigahertz range. Synthetic Metals, 1994, 63, 121-126.	2.1	3
107	Hopping in disordered conducting polymers. Physical Review B, 1994, 50, 5196-5203.	1.1	210
108	Magnetic and transport properties of polypyrrole doped with polyanions. Synthetic Metals, 1994, 63, 115-119.	2.1	39

#	Article	IF	CITATIONS
109	Conduction electron spin resonance inRb3C60. Physical Review Letters, 1993, 71, 1091-1094.	2.9	116
110	Hopping conduction in a nanometer-size crystalline system: A SiC fiber. Physical Review B, 1992, 46, 8139-8146.	1.1	31
111	Electronic properties of disordered SiC materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1992, 11, 303-306.	1.7	9