Pablo Canizares Cañizares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6128468/publications.pdf Version: 2024-02-01

		26630	58581
233	10,215	56	82
papers	citations	h-index	g-index
234	234	234	7595
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 2009, 90, 410-420.	7.8	330
2	Coagulation and Electrocoagulation of Wastes Polluted with Dyes. Environmental Science & Technology, 2006, 40, 6418-6424.	10.0	198
3	Coagulation and electrocoagulation of oil-in-water emulsions. Journal of Hazardous Materials, 2008, 151, 44-51.	12.4	190
4	Electrochemical Oxidation of Hydroquinone, Resorcinol, and Catechol on Boron-Doped Diamond Anodes. Environmental Science & Technology, 2005, 39, 7234-7239.	10.0	181
5	Study of the Electrocoagulation Process Using Aluminum and Iron Electrodes. Industrial & Engineering Chemistry Research, 2007, 46, 6189-6195.	3.7	178
6	Microbial fuel cell with an algae-assisted cathode: A preliminary assessment. Journal of Power Sources, 2013, 242, 638-645.	7.8	167
7	Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC. International Journal of Hydrogen Energy, 2010, 35, 1347-1355.	7.1	148
8	PBI-based polymer electrolyte membranes fuel cells. Electrochimica Acta, 2007, 52, 3910-3920.	5.2	143
9	Removal of nitrates from groundwater by electrocoagulation. Chemical Engineering Journal, 2011, 171, 1012-1017.	12.7	133
10	The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters. Journal of Hazardous Materials, 2009, 163, 158-164.	12.4	128
11	Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochimica Acta, 2018, 263, 1-7.	5.2	124
12	Three-dimensional model of a 50Âcm2 high temperature PEM fuel cell. Study of the flow channel geometry influence. International Journal of Hydrogen Energy, 2010, 35, 5510-5520.	7.1	123
13	Electrochemical denitrificacion with chlorides using DSA and BDD anodes. Chemical Engineering Journal, 2012, 184, 66-71.	12.7	123
14	Recovery of heavy metals by means of ultrafiltration with water-soluble polymers: calculation of design parameters. Desalination, 2002, 144, 279-285.	8.2	110
15	Electrochemical phosphates removal using iron and aluminium electrodes. Chemical Engineering Journal, 2011, 172, 137-143.	12.7	108
16	Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: Effect of periodic polarity reversal and voltage gradient. Chemical Engineering Journal, 2016, 299, 30-36.	12.7	107
17	Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation. A comparison. Water Research, 2009, 43, 2131-2138.	11.3	101
18	Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with boron-doped diamond anodes. Journal of Chemical Technology and Biotechnology, 2006, 81, 1331-1337.	3.2	96

#	Article	IF	CITATIONS
19	A novel titanium PBI-based composite membrane for high temperature PEMFCs. Journal of Membrane Science, 2011, 369, 105-111.	8.2	96
20	Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae. Applied Energy, 2013, 110, 220-226.	10.1	96
21	Electrochemical conversion/combustion of a model organic pollutant on BDD anode: Role of sp 3 /sp 2 ratio. Electrochemistry Communications, 2014, 47, 37-40.	4.7	96
22	Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount. RSC Advances, 2012, 2, 1547-1556.	3.6	94
23	Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. Journal of Hazardous Materials, 2016, 319, 93-101.	12.4	91
24	Break-up of oil-in-water emulsions by electrochemical techniques. Journal of Hazardous Materials, 2007, 145, 233-240.	12.4	89
25	Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation. Water Research, 2013, 47, 1741-1750.	11.3	88
26	Electrochemical dosing of iron and aluminum in continuous processes: A key step to explain electro-coagulation processes. Separation and Purification Technology, 2012, 98, 102-108.	7.9	86
27	Modeling of Wastewater Electro-oxidation Processes Part I. General Description and Application to Inactive Electrodes. Industrial & amp; Engineering Chemistry Research, 2004, 43, 1915-1922.	3.7	85
28	Electrocatalytic properties of diamond in the oxidation of a persistant pollutant. Applied Catalysis B: Environmental, 2009, 89, 645-650.	20.2	83
29	Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes. Chemical Engineering Journal, 2012, 184, 221-227.	12.7	82
30	Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2016, 188, 305-312.	20.2	82
31	Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media. Journal of Hazardous Materials, 2012, 213-214, 478-484.	12.4	80
32	Comparison of the Aluminum Speciation in Chemical and Electrochemical Dosing Processes. Industrial & Engineering Chemistry Research, 2006, 45, 8749-8756.	3.7	79
33	Use of carbon felt cathodes for the electrochemical reclamation of urban treated wastewaters. Applied Catalysis B: Environmental, 2015, 162, 252-259.	20.2	79
34	Adsorption equilibrium of phenol onto chemically modified activated carbon F400. Journal of Hazardous Materials, 2006, 131, 243-248.	12.4	78
35	Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. Journal of Power Sources, 2011, 196, 8265-8271.	7.8	78
36	Performance of a Vapor-Fed Polybenzimidazole (PBI)-Based Direct Methanol Fuel Cell. Energy & Fuels, 2008, 22, 3335-3345.	5.1	76

#	Article	IF	CITATIONS
37	Combined soil washing and CDEO for the removal of atrazine from soils. Journal of Hazardous Materials, 2015, 300, 129-134.	12.4	75
38	Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes. Journal of Power Sources, 2015, 274, 177-185.	7.8	74
39	Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil. Journal of Hazardous Materials, 2015, 283, 131-139.	12.4	74
40	Use of conductive-diamond electrochemical-oxidation for the disinfection of several actual treated wastewaters. Chemical Engineering Journal, 2012, 211-212, 463-469.	12.7	71
41	Effect of polymer nature and hydrodynamic conditions on a process of polymer enhanced ultrafiltration. Journal of Membrane Science, 2005, 253, 149-163.	8.2	70
42	Thermal Degradation of Allicin in Garlic Extracts and Its Implication on the Inhibition of the in-Vitro Growth of Helicobacter pylori. Biotechnology Progress, 2008, 20, 32-37.	2.6	70
43	Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresource Technology, 2009, 100, 4704-4710.	9.6	70
44	Influence of mediated processes on the removal of Rhodamine with conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2015, 166-167, 454-459.	20.2	69
45	Removal of arsenic by iron and aluminium electrochemically assisted coagulation. Separation and Purification Technology, 2011, 79, 15-19.	7.9	67
46	Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell. Journal of Power Sources, 2011, 196, 4209-4217.	7.8	64
47	Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process. Water Research, 2014, 53, 329-338.	11.3	64
48	The role of particle size on the conductive diamond electrochemical oxidation of soil-washing effluent polluted with atrazine. Electrochemistry Communications, 2015, 55, 26-29.	4.7	64
49	Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils. Chemosphere, 2017, 185, 119-126.	8.2	64
50	Influence of Clay Binders on the Performance of Pd/HZSM-5 Catalysts for the Hydroisomerization ofn-Butane. Industrial & amp; Engineering Chemistry Research, 2001, 40, 3428-3434.	3.7	63
51	Regeneration of Used Lubricant Oil by Polar Solvent Extraction. Industrial & Engineering Chemistry Research, 2005, 44, 4373-4379.	3.7	63
52	Removal of nitrates by electrolysis in non-chloride media: Effect of the anode material. Separation and Purification Technology, 2011, 80, 592-599.	7.9	62
53	Treatment of ex-situ soil-washing fluids polluted with petroleum by anodic oxidation, photolysis, sonolysis and combined approaches. Chemical Engineering Journal, 2017, 310, 581-588.	12.7	61
54	Electrolytic and electro-irradiated technologies for the removal of chloramphenicol in synthetic urine with diamond anodes. Water Research, 2018, 128, 383-392.	11.3	61

#	Article	IF	CITATIONS
55	Combination of bioremediation and electrokinetics for the in-situ treatment of diesel polluted soil: A comparison of strategies. Science of the Total Environment, 2015, 533, 307-316.	8.0	60
56	Electrochemical treatment of diluted cyanide aqueous wastes. Journal of Chemical Technology and Biotechnology, 2005, 80, 565-573.	3.2	58
57	Regeneration of used lubricant oil by ethane extraction. Journal of Supercritical Fluids, 2007, 39, 315-322.	3.2	58
58	Degradation of caffeine by conductive diamond electrochemical oxidation. Chemosphere, 2013, 93, 1720-1725.	8.2	58
59	Coupling photo and sono technologies to improve efficiencies in conductive diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2014, 144, 121-128.	20.2	57
60	Removal of sulfamethoxazole from waters and wastewaters by conductiveâ€diamond electrochemical oxidation. Journal of Chemical Technology and Biotechnology, 2012, 87, 1441-1449.	3.2	56
61	Coupling ultraviolet light and ultrasound irradiation with Conductive-Diamond Electrochemical Oxidation for the removal of progesterone. Electrochimica Acta, 2014, 140, 20-26.	5.2	56
62	Removal of heavy metal ions by polymer enhanced ultrafiltration. Desalination, 2012, 286, 193-199.	8.2	55
63	Scale-up on electrokinetic remediation: Engineering and technological parameters. Journal of Hazardous Materials, 2016, 315, 135-143.	12.4	55
64	On the applications of peroxodiphosphate produced by BDD-electrolyses. Chemical Engineering Journal, 2013, 233, 8-13.	12.7	54
65	Effect of the electron-acceptors on the performance of a MFC. Bioresource Technology, 2010, 101, 7014-7018.	9.6	53
66	Effect of the polarity reversal frequency in the electrokinetic-biological remediation of oxyfluorfen polluted soil. Chemosphere, 2017, 177, 120-127.	8.2	53
67	Regeneration of Used Lubricant Oil by Propane Extraction. Industrial & Engineering Chemistry Research, 2003, 42, 4867-4873.	3.7	52
68	Modeling of Wastewater Electro-oxidation Processes Part II. Application to Active Electrodes. Industrial & Engineering Chemistry Research, 2004, 43, 1923-1931.	3.7	52
69	The electrolytic treatment of synthetic urine using DSA electrodes. Journal of Electroanalytical Chemistry, 2015, 744, 62-68.	3.8	50
70	Characterization of light/dark cycle and long-term performance test in a photosynthetic microbial fuel cell. Fuel, 2015, 140, 209-216.	6.4	50
71	Towards the scale up of a pressurized-jet microfluidic flow-through reactor for cost-effective electro-generation of H2O2. Journal of Cleaner Production, 2019, 211, 1259-1267.	9.3	50
72	Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater. Journal of Applied Electrochemistry, 2015, 45, 799-808.	2.9	48

#	Article	IF	CITATIONS
73	Disinfection of urine by conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2018, 229, 63-70.	20.2	48
74	Allyl-thiosulfinates, the Bacteriostatic Compounds of Garlic against Helicobacter pylori. Biotechnology Progress, 2008, 20, 397-401.	2.6	47
75	Influence of sludge age on the performance of MFC treating winery wastewater. Chemosphere, 2016, 151, 163-170.	8.2	46
76	Improving the biodegradability of hospital urines polluted with chloramphenicol by the application of electrochemical oxidation. Science of the Total Environment, 2020, 725, 138430.	8.0	46
77	Promising TiOSO ₄ Composite Polybenzimidazoleâ€Based Membranes for High Temperature PEMFCs. ChemSusChem, 2011, 4, 1489-1497.	6.8	45
78	Degradation of dye Procion Red MX-5B by electrolytic and electro-irradiated technologies using diamond electrodes. Chemosphere, 2018, 199, 445-452.	8.2	45
79	The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature. Journal of Power Sources, 2009, 192, 190-194.	7.8	44
80	Removal of triclosan by conductiveâ€diamond electrolysis and sonoelectrolysis. Journal of Chemical Technology and Biotechnology, 2013, 88, 823-828.	3.2	43
81	Sono-electrocoagulation of wastewater polluted with Rhodamine 6G. Separation and Purification Technology, 2014, 135, 110-116.	7.9	42
82	Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Applied Catalysis B: Environmental, 2016, 198, 516-524.	20.2	42
83	Energy recovery from winery wastewater using a dual chamber microbial fuel cell. Journal of Chemical Technology and Biotechnology, 2016, 91, 1802-1808.	3.2	42
84	Synergistic integration of sonochemical and electrochemical disinfection with DSA anodes. Chemosphere, 2016, 163, 562-568.	8.2	42
85	Use of conductive diamond photo-electrochemical oxidation for the removal of pesticide glyphosate. Separation and Purification Technology, 2016, 167, 127-135.	7.9	42
86	Feasibility Of Coupling Permeable Bio-Barriers And Electrokinetics For The Treatment Of Diesel Hydrocarbons Polluted Soils. Electrochimica Acta, 2015, 181, 192-199.	5.2	41
87	Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes. Environmental Science and Pollution Research, 2015, 22, 6176-6184.	5.3	41
88	What happens to inorganic nitrogen species during conductive diamond electrochemical oxidation of real wastewater?. Electrochemistry Communications, 2016, 67, 65-68.	4.7	41
89	Electrosynthesis of ferrates with diamond anodes. AICHE Journal, 2008, 54, 1600-1607.	3.6	40
90	An evaluation of aerobic and anaerobic sludges as start-up material for microbial fuel cell systems. New Biotechnology, 2012, 29, 415-420.	4.4	40

#	Article	IF	CITATIONS
91	Use of DiaCell modules for the electro-disinfection of secondary-treated wastewater with diamond anodes. Chemical Engineering Journal, 2016, 306, 433-440.	12.7	40
92	Is it really important the addition of salts for the electrolysis of soil washing effluents?. Electrochimica Acta, 2017, 246, 372-379.	5.2	40
93	Driving force behind electrochemical performance of microbial fuel cells fed with different substrates. Chemosphere, 2018, 207, 313-319.	8.2	40
94	Modelling of wastewater electrocoagulation processesPart I. General description and application to kaolin-polluted wastewaters. Separation and Purification Technology, 2008, 60, 155-161.	7.9	39
95	Scaling-up an integrated electrodisinfection-electrocoagulation process for wastewater reclamation. Chemical Engineering Journal, 2020, 380, 122415.	12.7	39
96	Assessing the performance of electrochemical oxidation using DSA® and BDD anodes in the presence of UVC light. Chemosphere, 2020, 238, 124575.	8.2	39
97	Detoxification of synthetic industrial wastewaters using electrochemical oxidation with boron-doped diamond anodes. Journal of Chemical Technology and Biotechnology, 2006, 81, 352-358.	3.2	38
98	Effect of a direct electric current on the activity of a hydrocarbon-degrading microorganism culture used as the flushing liquid in soil remediation processes. Separation and Purification Technology, 2014, 124, 217-223.	7.9	38
99	Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell. Applied Catalysis B: Environmental, 2009, 91, 269-274.	20.2	37
100	Study of a photosynthetic MFC for energy recovery from synthetic industrial fruit juice wastewater. International Journal of Hydrogen Energy, 2014, 39, 21828-21836.	7.1	37
101	A review on disinfection technologies for controlling the antibiotic resistance spread. Science of the Total Environment, 2021, 797, 149150.	8.0	37
102	A comparison of hydrogen cloud explosion models and the study of the vulnerability of the damage caused by an explosion of H2H2. International Journal of Hydrogen Energy, 2006, 31, 1780-1790.	7.1	36
103	Electrochemical Degradation of the Reactive Red 141 Dye Using a Boron-Doped Diamond Anode. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	36
104	Removal of 2,4,6-Trichlorophenol from Spiked Clay Soils by Electrokinetic Soil Flushing Assisted with Granular Activated Carbon Permeable Reactive Barrier. Industrial & Engineering Chemistry Research, 2014, 53, 840-846.	3.7	36
105	Removal of pharmaceuticals from the urine of polymedicated patients: A first approach. Chemical Engineering Journal, 2018, 331, 606-614.	12.7	36
106	Removal of pendimethalin from soil washing effluents using electrolytic and electro-irradiated technologies based on diamond anodes. Applied Catalysis B: Environmental, 2017, 213, 190-197.	20.2	35
107	Influence of the doping level of boron-doped diamond anodes on the removal of penicillin G from urine matrixes. Science of the Total Environment, 2020, 736, 139536.	8.0	35
108	Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole. Journal of Power Sources, 2011, 196, 4306-4313.	7.8	34

#	Article	IF	CITATIONS
109	Metoprolol abatement from wastewaters by electrochemical oxidation with boron doped diamond anodes. Journal of Chemical Technology and Biotechnology, 2012, 87, 225-231.	3.2	34
110	High efficiencies in the electrochemical oxidation of an anthraquinonic dye with conductive-diamond anodes. Environmental Science and Pollution Research, 2014, 21, 8442-8450.	5.3	34
111	Coupling UV irradiation and electrocoagulation for reclamation of urban wastewater. Electrochimica Acta, 2014, 140, 396-403.	5.2	34
112	A Critical View of Microbial Fuel Cells: What Is the Next Stage?. ChemSusChem, 2018, 11, 4183-4192.	6.8	34
113	Waste Oil Recycling Using Mixtures of Polar Solvents. Industrial & Engineering Chemistry Research, 2005, 44, 7854-7859.	3.7	33
114	Oxygen availability effect on the performance of airâ€breathing cathode microbial fuel cell. Biotechnology Progress, 2015, 31, 900-907.	2.6	33
115	Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes. Journal of Environmental Management, 2016, 171, 260-266.	7.8	33
116	Modelling of wastewater electrocoagulation processesPart II: Application to dye-polluted wastewaters and oil-in-water emulsions. Separation and Purification Technology, 2008, 60, 147-154.	7.9	32
117	Study of the production of hydrogen bubbles at low current densities for electroflotation processes. Journal of Chemical Technology and Biotechnology, 2010, 85, 1368-1373.	3.2	32
118	Electrolysis of progesterone with conductiveâ€diamond electrodes. Journal of Chemical Technology and Biotechnology, 2012, 87, 1173-1178.	3.2	32
119	Improving biodegradability of soil washing effluents using anodic oxidation. Bioresource Technology, 2018, 252, 1-6.	9.6	32
120	Coagulation and Electrocoagulation of Wastes Polluted with Colloids. Separation Science and Technology, 2007, 42, 2157-2175.	2.5	31
121	Use of electrochemical technology to increase the quality of the effluents of bio-oxidation processes. A case studied. Chemosphere, 2008, 72, 1080-1085.	8.2	31
122	Sonoelectrolysis of Wastewaters Polluted with Dimethyl Phthalate. Industrial & Engineering Chemistry Research, 2013, 52, 9674-9682.	3.7	31
123	Combining bioadsorption and photoelectrochemical oxidation for the treatment of soilâ€washing effluents polluted with herbicide 2,4â€Ð. Journal of Chemical Technology and Biotechnology, 2017, 92, 83-89.	3.2	31
124	The Role of the Anode Material in Selective Penicillin G Oxidation in Urine. ChemElectroChem, 2019, 6, 1376-1384.	3.4	31
125	Modelling and cost evaluation of electro-coagulation processes for the removal of anions from water. Separation and Purification Technology, 2013, 107, 219-227.	7.9	30
126	Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2,4-dichlorophenoxyacetic acid. Electrochimica Acta, 2018, 269, 415-421.	5.2	30

#	Article	IF	CITATIONS
127	Can CabECO® technology be used for the disinfection of highly faecal-polluted surface water?. Chemosphere, 2018, 209, 346-352.	8.2	30
128	Preliminary design and optimisation of a PEUF process for Cr(VI) removal. Desalination, 2008, 223, 229-237.	8.2	29
129	Technical and economic comparison of conventional and electrochemical coagulation processes. Journal of Chemical Technology and Biotechnology, 2009, 84, 702-710.	3.2	29
130	Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. Chemosphere, 2015, 136, 281-288.	8.2	29
131	Photoelectrocatalytic Oxidation of Methyl Orange on a TiO ₂ Nanotubular Anode Using a Flow Cell. Chemical Engineering and Technology, 2016, 39, 135-141.	1.5	29
132	Vanadium redox flow batteries for the storage of electricity produced in wind turbines. International Journal of Energy Research, 2018, 42, 720-730.	4.5	29
133	Can electrochemistry enhance the removal of organic pollutants by phytoremediation?. Journal of Environmental Management, 2018, 225, 280-287.	7.8	29
134	Optimization of Allium sativum Solvent Extraction for the Inhibition of in Vitro Growth of Helicobacter Pylori. Biotechnology Progress, 2002, 18, 1227-1232.	2.6	28
135	Polymer supported ultrafiltration as a technique for selective heavy metal separation and complex formation constants prediction. Separation and Purification Technology, 2010, 73, 126-134.	7.9	28
136	Direct and inverse neural networks modelling applied to study the influence of the gas diffusion layer properties on PBI-based PEM fuel cells. International Journal of Hydrogen Energy, 2010, 35, 7889-7897.	7.1	28
137	Electro-osmotic fluxes in multi-well electro-remediation processes. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1549-1557.	1.7	28
138	Electrochemical removal of dimethyl phthalate with diamond anodes. Journal of Chemical Technology and Biotechnology, 2014, 89, 282-289.	3.2	28
139	Irradiated-assisted electrochemical processes for the removal of persistent pollutants from real wastewater. Separation and Purification Technology, 2017, 175, 428-434.	7.9	28
140	Removal of methylene blue from aqueous solutions using an Fe2+ catalyst and in-situ H2O2 generated at gas diffusion cathodes. Electrochimica Acta, 2019, 308, 45-53.	5.2	28
141	Recovery of Nicotine from Aqueous Extracts of Tobacco Wastes by an H+-Form Strong-Acid Ion Exchanger. Industrial & Engineering Chemistry Research, 1998, 37, 4783-4791.	3.7	27
142	Microporous layer based on SiC for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 2015, 288, 288-295.	7.8	27
143	Conductive diamond sono-electrochemical disinfection (CDSED) for municipal wastewater reclamation. Ultrasonics Sonochemistry, 2015, 22, 493-498.	8.2	27
144	Driving force of the better performance of metal-doped carbonaceous anodes in microbial fuel cells. Applied Energy, 2018, 225, 52-59.	10.1	27

#	Article	IF	CITATIONS
145	Radiation-assisted electrochemical processes in semi-pilot scale for the removal of clopyralid from soil washing wastes. Separation and Purification Technology, 2019, 208, 100-109.	7.9	27
146	Improvement of the Waste-Oil Vacuum-Distillation Recycling by Continuous Extraction with Dense Propane. Industrial & Engineering Chemistry Research, 2007, 46, 266-272.	3.7	26
147	Activation by light irradiation of oxidants electrochemically generated during Rhodamine B elimination. Journal of Electroanalytical Chemistry, 2015, 757, 144-149.	3.8	26
148	Electro-oxidation of As(III) with dimensionally-stable and conductive-diamond anodes. Journal of Hazardous Materials, 2012, 203-204, 22-28.	12.4	25
149	Using a new photoâ€reactor to promote conductiveâ€diamond electrochemical oxidation of dimethyl phthalate. Journal of Chemical Technology and Biotechnology, 2014, 89, 1251-1258.	3.2	24
150	Electrocoagulation as the Key for an Efficient Concentration and Removal of Oxyfluorfen from Liquid Wastes. Industrial & Engineering Chemistry Research, 2017, 56, 3091-3097.	3.7	24
151	Novel Ti/RuO2IrO2 anode to reduce the dangerousness of antibiotic polluted urines by Fenton-based processes. Chemosphere, 2021, 270, 129344.	8.2	24
152	Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres. ChemSusChem, 2016, 9, 1187-1193.	6.8	23
153	Enhancement of UV disinfection of urine matrixes by electrochemical oxidation. Journal of Hazardous Materials, 2021, 410, 124548.	12.4	23
154	The role of chloramines on the electrodisinfection of Klebsiella pneumoniae in hospital urines. Chemical Engineering Journal, 2021, 409, 128253.	12.7	23
155	n-Butane Hydroisomerization over Pd/HZSM-5 Catalysts. 1. Palladium Loaded by Impregnation. Industrial & Engineering Chemistry Research, 1998, 37, 2592-2600.	3.7	22
156	Influence of soil texture on the electrokinetic transport of diesel-degrading microorganisms. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 914-919.	1.7	22
157	Conductive-diamond electrochemical oxidation of chlorpyrifos in wastewater and identification of its main degradation products by LC–TOFMS. Chemosphere, 2012, 89, 1169-1176.	8.2	22
158	An easy parameter estimation procedure for modeling a HT-PEMFC. International Journal of Hydrogen Energy, 2012, 37, 11308-11320.	7.1	22
159	Treatment of Soil-Washing Effluents Polluted with Herbicide Oxyfluorfen by Combined Biosorption–Electrolysis. Industrial & Engineering Chemistry Research, 2017, 56, 1903-1910.	3.7	22
160	Removal of 2,4-D herbicide in soils using a combined process based on washing and adsorption electrochemically assisted. Separation and Purification Technology, 2018, 194, 19-25.	7.9	22
161	Electrokinetic transport of diesel-degrading microorganisms through soils of different textures using electric fields. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 274-279.	1.7	21
162	Improving the catalytic effect of peroxodisulfate and peroxodiphosphate electrochemically generated at diamond electrode by activation with light irradiation. Chemosphere, 2018, 207, 774-780.	8.2	21

#	Article	IF	CITATIONS
163	Coupling Ultrasound to the Electroâ€Oxidation of Methyl Paraben Synthetic Wastewater: Effect of Frequency and Supporting Electrolyte. ChemElectroChem, 2019, 6, 1199-1205.	3.4	21
164	Arsenic Removal from High-Arsenic Water Sources by Coagulation and Electrocoagulation. Separation Science and Technology, 2013, 48, 508-514.	2.5	20
165	Electrochemical systems equipped with 2D and 3D microwave-made anodes for the highly efficient degradation of antibiotics in urine. Electrochimica Acta, 2021, 392, 139012.	5.2	20
166	Disinfection of polymicrobial urines by electrochemical oxidation: Removal of antibiotic-resistant bacteria and genes. Journal of Hazardous Materials, 2022, 426, 128028.	12.4	20
167	The Treatment of Actual Industrial Wastewaters Using Electrochemical Techniques. Electrocatalysis, 2013, 4, 252-258.	3.0	19
168	Removal of nitrates from spiked clay soils by coupling electrokinetic and permeable reactive barrier technologies. Journal of Chemical Technology and Biotechnology, 2015, 90, 1719-1726.	3.2	19
169	Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study. Environmental Science and Pollution Research, 2016, 23, 19713-19722.	5.3	19
170	Life test of a high temperature PEM fuel cell prepared by electrospray. International Journal of Hydrogen Energy, 2016, 41, 20294-20304.	7.1	19
171	Towards the scaleâ€up of electrolysis with diamond anodes: effect of stacking on the electrochemical oxidation of 2,4 D. Journal of Chemical Technology and Biotechnology, 2016, 91, 742-747.	3.2	19
172	The Role of Mediated Oxidation on the Electro-irradiated Treatment of Amoxicillin and Ampicillin Polluted Wastewater. Catalysts, 2019, 9, 9.	3.5	19
173	Outstanding performance of the microwave-made MMO-Ti/RuO2IrO2 anode on the removal of antimicrobial activity of Penicillin G by photoelectrolysis. Chemical Engineering Journal, 2021, 420, 129999.	12.7	19
174	Improvement and modelling of a batch polyelectrolyte enhanced ultrafiltration process for the recovery of copper. Desalination, 2005, 184, 357-366.	8.2	18
175	Electrochemical coagulation of treated wastewaters for reuse. Desalination and Water Treatment, 2013, 51, 3381-3388.	1.0	18
176	Removal of antibiotic resistant bacteria by electrolysis with diamond anodes: A pretreatment or a tertiary treatment?. Journal of Water Process Engineering, 2020, 38, 101557.	5.6	18
177	Removal of Alkaline Catalysts from Polyols by Ion Exchange: Selection of an Ion-Exchange Resin. Separation Science and Technology, 1995, 30, 125-140.	2.5	17
178	Potassium removal from water-methanol-polyol mixtures by ion exchange on Amberlite 252. Chemical Engineering Journal, 1997, 66, 137-147.	12.7	17
179	Tannic acid removal from aqueous effluents using micellar enhanced ultrafiltration at pilot scale. Desalination, 2006, 200, 310-312.	8.2	17
180	Water-soluble polymer ultrafiltration process at pilot scale: Study of hydrodynamics and factors limiting flux. Journal of Membrane Science, 2009, 341, 37-45.	8.2	17

#	Article	IF	CITATIONS
181	Durability study of HTPEMFC through current distribution measurements and the application of a model. International Journal of Hydrogen Energy, 2014, 39, 21678-21687.	7.1	17
182	The influence of sludge retention time on mixed culture microbial fuel cell start-ups. Biochemical Engineering Journal, 2017, 123, 38-44.	3.6	17
183	Towards the sustainable powering of the electrocoagulation of wastewater through the use of solar-vanadium redox flow battery: A first approach. Electrochimica Acta, 2018, 270, 14-21.	5.2	17
184	Optimization of the performance of an air-cathode MFC by changing solid retention time. Journal of Chemical Technology and Biotechnology, 2017, 92, 1746-1755.	3.2	16
185	A comparison of the electrolysis of soil washing wastes with active and non-active electrodes. Chemosphere, 2019, 225, 19-26.	8.2	16
186	Life study of a PBI-PEM fuel cell by current distribution measurement. Journal of Applied Electrochemistry, 2012, 42, 711-718.	2.9	15
187	Removal of algae from biological cultures: a challenge for electrocoagulation?. Journal of Chemical Technology and Biotechnology, 2016, 91, 82-87.	3.2	15
188	Reproducibility and robustness of microbial fuel cells technology. Journal of Power Sources, 2019, 412, 640-647.	7.8	15
189	Testing PtRu/CNF catalysts for a high temperature polybenzimidazole-based direct ethanol fuel cell. Effect of metal content. Applied Catalysis B: Environmental, 2011, 106, 174-174.	20.2	14
190	Can electro-bioremediation of polluted soils perform as a self-sustainable process?. Journal of Applied Electrochemistry, 2018, 48, 579-588.	2.9	14
191	Effect of sludge age on microbial consortia developed in MFCs. Journal of Chemical Technology and Biotechnology, 2018, 93, 1290-1299.	3.2	14
192	Scaling up the electrokinetic-assisted phytoremediation of atrazine-polluted soils using reversal of electrode polarity: A mesocosm study. Journal of Environmental Management, 2020, 255, 109806.	7.8	14
193	Energy recovery of biogas from juice wastewater through a short high temperature PEMFC stack. International Journal of Hydrogen Energy, 2014, 39, 6937-6943.	7.1	13
194	Influence of the Cathode Platinum Loading and of the Implementation of Membranes on the Performance of Air-Breathing Microbial Fuel Cells. Electrocatalysis, 2017, 8, 442-449.	3.0	13
195	Fixedâ€bed biological barrier coupled with electrokinetics for the <i>in situ</i> electrobioremediation of 2,4â€dichlorophenoxyacetic acid polluted soil. Journal of Chemical Technology and Biotechnology, 2019, 94, 2684-2692.	3.2	13
196	Innovative photoelectrochemical cell for the removal of CHCs from soil washing wastes. Separation and Purification Technology, 2020, 230, 115876.	7.9	13
197	Performance of ultrafiltration as a pre-concentration stage for the treatment of oxyfluorfen by electrochemical BDD oxidation. Separation and Purification Technology, 2020, 237, 116366.	7.9	13
198	Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine. Molecules, 2021, 26, 6813.	3.8	13

#	Article	IF	CITATIONS
199	Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 44-51.	1.7	12
200	Electrochemical regeneration of partially ethoxylated polyethylenimine used in the polymer-supported ultrafiltration of copper. Journal of Hazardous Materials, 2009, 168, 25-30.	12.4	11
201	Treatment of door-manufacturing factories wastewaters using CDEO and other AOPsA comparison. Journal of Hazardous Materials, 2009, 168, 358-363.	12.4	11
202	Improvement of the electro-bioremediation process of a non-polar herbicide-polluted soil by means of surfactant addition. Science of the Total Environment, 2019, 650, 1961-1968.	8.0	11
203	Selection of anodic material for the combined electrochemical-biological treatment of lindane polluted soil washing effluents. Journal of Hazardous Materials, 2020, 384, 121237.	12.4	11
204	Biostimulation versus bioaugmentation for the electro-bioremediation of 2,4-dichlorophenoxyacetic acid polluted soils. Journal of Environmental Management, 2021, 277, 111424.	7.8	11
205	ION EXCHANGE EQUILIBRIUM OF POTASSIUM ON STRONG ACID RESINS IN POLYOL MEDIA. Solvent Extraction and Ion Exchange, 1996, 14, 141-159.	2.0	10
206	Influence of palladium incorporation technique on n-butane hydroisomerization over HZSM-5/bentonite catalysts. Applied Catalysis A: General, 2004, 274, 79-85.	4.3	10
207	Electrocoagulation as a key technique in the integrated urban water cycle – A case study in the centre of Spain. Urban Water Journal, 2017, 14, 650-654.	2.1	10
208	Algal biomass as fuel for stackedâ€MFCs for profitable, sustainable and carbon neutral bioenergy generation. Journal of Chemical Technology and Biotechnology, 2018, 93, 287-293.	3.2	9
209	Anodic oxidation for the remediation of soils polluted with perchloroethylene. Journal of Chemical Technology and Biotechnology, 2019, 94, 288-294.	3.2	9
210	Electrobioremediation of Oxyfluorfen-Polluted Soil by Means of a Fixed-Bed Permeable Biological Barrier. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	9
211	Electrochemical production of perchlorate as an alternative for the valorization of brines. Chemosphere, 2019, 220, 637-643.	8.2	9
212	Competitive Anodic Oxidation of Methyl Paraben and Propylene Glycol: Keys to Understand the Process. ChemElectroChem, 2019, 6, 771-778.	3.4	9
213	On the Degradation of 17-Î ² Estradiol Using Boron Doped Diamond Electrodes. Processes, 2020, 8, 710.	2.8	9
214	High levofloxacin removal in the treatment of synthetic human urine using Ti/MMO/ZnO photo-electrocatalyst. Journal of Environmental Chemical Engineering, 2022, 10, 107317.	6.7	9
215	Neuro-evolutionary approach applied for optimizing the PEMFC performance. International Journal of Hydrogen Energy, 2014, 39, 4037-4043.	7.1	8
216	Highâ€Stability Electrodes for Highâ€Temperature Proton Exchange Membrane Fuel Cells by Using Advanced Nanocarbonaceous Materials. ChemElectroChem, 2017, 4, 3288-3295.	3.4	8

#	Article	IF	CITATIONS
217	Neuro-evolutionary modelling of the electrodeposition stage of a polymer-supported ultrafiltration–electrodeposition process for the recovery of heavy metals. Environmental Modelling and Software, 2013, 42, 133-142.	4.5	7
218	Optimization of a cell for the electrochemical synergistic production of peroxoacetic acid. Electrochimica Acta, 2018, 260, 177-183.	5.2	7
219	Biofilm and planktonic population distribution. Key aspects in carbonaceous anodes for microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2018, 93, 3436-3443.	3.2	7
220	Development of a novel electrochemical coagulant dosing unit for water treatment. Journal of Chemical Technology and Biotechnology, 2019, 94, 216-221.	3.2	7
221	Improving the Efficiencies of Batch Coagulation Processes with Small Modifications in the pH. Separation Science and Technology, 2010, 45, 1411-1417.	2.5	6
222	Production of coagulant reagents for electro-coagulation processes at low current densities. Desalination and Water Treatment, 2012, 45, 256-262.	1.0	6
223	Thermally-treated algal suspensions as fuel for microbial fuel cells. Journal of Electroanalytical Chemistry, 2018, 814, 77-82.	3.8	6
224	Influence of the initial sludge characteristics and acclimation on the long-term performance of double-compartment acetate-fed microbial fuel cells. Journal of Electroanalytical Chemistry, 2018, 825, 1-7.	3.8	6
225	Reactor design as a critical input in the electrochemical production of peroxoacetic acid. Journal of Chemical Technology and Biotechnology, 2019, 94, 2955-2960.	3.2	6
226	Electrochemically assisted dewatering for the removal of oxyfluorfen from a coagulation/flocculation sludge. Journal of Environmental Management, 2020, 258, 110015.	7.8	4
227	Electro-Fenton-Based Technologies for Selectively Degrading Antibiotics in Aqueous Media. Catalysts, 2022, 12, 602.	3.5	4
228	Treatment of Cu/Zn wastes by combined PSU–electrodeposition processes. Journal of Environmental Management, 2013, 116, 181-185.	7.8	3
229	Towards the optimization of electro-bioremediation of soil polluted with 2,4-dichlorophenoxyacetic acid. Environmental Technology and Innovation, 2020, 20, 101156.	6.1	3
230	Valorization of high-salinity effluents for CO2 fixation and hypochlorite generation. Chemosphere, 2021, 285, 131359.	8.2	3
231	Prescale-Up of Electro-Bioremediation Processes. , 2016, , .		2
232	Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants. , 2010, , 99-124.		0
233	The Gas Diffusion Layer in High Temperature Polymer Electrolyte Membrane Fuel Cells. , 0, , .		Ο