Sergio Mestre BeltrÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6128029/publications.pdf

Version: 2024-02-01

		471061	525886
54	858	17	27
papers	citations	h-index	g-index
54	54	54	867
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Study of lithium carbonate as sintering aid for tin oxide densification trough experimental designs: Main variables and microstructure changes. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2023, 62, 194-202.	0.9	1
2	Study of the chlorfenvinphos pesticide removal under different anodic materials and different reactor configuration. Chemosphere, 2022, 290, 133294.	4.2	6
3	Antimony-doped tin dioxide ceramics used as standalone membrane electrodes in electrofiltration reactors enhance the oxidation of organic micropollutants. Journal of Cleaner Production, 2022, 363, 132342.	4.6	6
4	Low-cost ceramic membrane bioreactor: Effect of backwashing, relaxation and aeration on fouling. Protozoa and bacteria removal. Chemosphere, 2022, 306, 135587.	4.2	2
5	Effect of type and amount of alumina as dopant over the densification and the electrical properties of zinc oxide ceramic electrodes. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2021, 60, 53-61.	0.9	4
6	Magnetic Photocatalyst for Wastewater Tertiary Treatment at Pilot Plant Scale: Disinfection and Enrofloxacin Abatement. Water (Switzerland), 2021, 13, 329.	1.2	7
7	Effect of pore generator on microstructure and resistivity of Sb2O3 and CuO doped SnO2 electrodes. Journal of Porous Materials, 2020, 27, 1801-1808.	1.3	2
8	Electrochemical Degradation of Reactive Black 5 using two-different reactor configuration. Scientific Reports, 2020, 10, 4482.	1.6	32
9	Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Separation and Purification Technology, 2019, 208, 68-75.	3.9	81
10	Low-cost ceramic membranes: A research opportunity for industrial application. Journal of the European Ceramic Society, 2019, 39, 3392-3407.	2.8	102
11	Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem, 2019, 6, 2430-2437.	1.7	2
12	CuO improved (Sn,Sb)O ₂ ceramic anodes for electrochemical advanced oxidation processes. International Journal of Applied Ceramic Technology, 2019, 16, 1274-1285.	1.1	10
13	Effect of secondary thermal treatment on crystallinity of spinel-type Co(Cr,Al)2O4 pigments synthesized by solution combustion route. Journal of Non-Crystalline Solids, 2018, 501, 62-70.	1.5	5
14	Experimental design applied to improving the effect of bismuth oxide as a sintering aid for tin oxide. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2018, 57, 119-123.	0.9	3
15	Effects of composition and furnace temperature on (Ni, Co) (Cr, Al) < sub > 2 < /sub > O < sub > 4 < /sub > pigments synthesized by solution combustion route. International Journal of Applied Ceramic Technology, 2018, 15, 179-190.	1.1	6
16	Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 2018, 44, 2216-2222.	2.3	27
17	Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane. Materials, 2018, 11, 22.	1.3	29
18	Iron zircon pigment synthesis: Proposal of a mixing index for the raw materials mixtures. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2017, 56, 177-185.	0.9	4

#	Article	IF	Citations
19	Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide. Journal of the American Ceramic Society, 2017, 100, 4180-4189.	1.9	9
20	Solution combustion synthesis of (Co,Ni)Cr2O4 pigments: Influence of initial solution concentration. Ceramics International, 2017, 43, 10032-10040.	2.3	12
21	Fuel effect on solution combustion synthesis of Co(Cr,Al) 2 O 4 pigments. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2017, 56, 215-225.	0.9	22
22	Solution combustion synthesis of (Ni,Fe)Cr2O4 pigments: Effect of post-synthesis thermal treatments. Ceramics International, 2017, 43, 12789-12798.	2.3	5
23	Comparison of porosity assessment techniques for low-cost ceramic membranes. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2017, 56, 29-38.	0.9	14
24	Improvement in Char Strength with an Open Cage Silsesquioxane Flame Retardant. Materials, 2017, 10, 567.	1.3	8
25	Characteristics reproducibility of (Fe, Co)(Cr, Al) 2 O 4 pigments obtained by solution combustion synthesis. Ceramics International, 2016, 42, 12880-12887.	2.3	23
26	On the underestimated effect of the starch ash on the characteristics of low cost ceramic membranes. Ceramics International, 2016, 42, 18944-18954.	2.3	20
27	Preparation of Chamottes as a Raw Material for Lowâ€Cost Ceramic Membranes. International Journal of Applied Ceramic Technology, 2016, 13, 1149-1158.	1.1	5
28	Synthesis and characterization of Au-modified macroporous Ni electrocatalysts for alkaline water electrolysis. International Journal of Hydrogen Energy, 2016, 41, 764-772.	3.8	28
29	Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Advances, 2015, 5, 46348-46358.	1.7	29
30	Influence of starch content on the properties of low-cost microfiltration ceramic membranes. Ceramics International, 2015, 41, 13064-13073.	2.3	30
31	Role of starch characteristics in the properties of low-cost ceramic membranes. Journal of the European Ceramic Society, 2015, 35, 2333-2341.	2.8	34
32	Comparison of extruded and pressed low cost ceramic supports for microfiltration membranes. Journal of the European Ceramic Society, 2015, 35, 3681-3691.	2.8	51
33	Chronopotentiometric study of ceramic cation-exchange membranes based on zirconium phosphate in contact with nickel sulfate solutions. Desalination and Water Treatment, 2013, 51, 597-605.	1.0	3
34	Interaction of the chromium–iron black pigment with porcelanised stoneware. Ceramics International, 2013, 39, 7453-7459.	2.3	6
35	Synthesis and electrochemical behavior of ceramic cation-exchange membranes based on zirconium phosphate. Ceramics International, 2013, 39, 4045-4054.	2.3	14
36	Low-cost inorganic cation exchange membrane for electrodialysis: optimum processing temperature for the cation exchanger. Desalination and Water Treatment, 2013, 51, 3317-3324.	1.0	3

#	Article	IF	Citations
37	Solution Combustion Synthesis of (Co,Fe)Cr2O4 pigments. Journal of the European Ceramic Society, 2012, 32, 1995-1999.	2.8	41
38	Development of a yellow ceramic pigment based on silver nanoparticles. Journal of the European Ceramic Society, 2012, 32, 2825-2830.	2.8	12
39	SÃntesis de un pigmento rojo a partir de nanopartÃculas de oro. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2012, 51, 75-82.	0.9	3
40	Capas finas de ZrO ₂ para mejorar la resistencia quÃmica de los vidriados mates de calcio. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2012, 51, 169-174.	0.9	1
41	Porous single-fired wall tile bodies: Influence of quartz particle size on tile properties. Journal of the European Ceramic Society, 2010, 30, 17-28.	2.8	22
42	Effect of tin concentration on the electrical properties of ceramic membranes used as separators in electrochemical reactors. Journal of Membrane Science, 2008, 323, 213-220.	4.1	9
43	Membrane electrochemical reactor for continuous regeneration of spent chromium plating baths. Desalination, 2006, 200, 668-670.	4.0	6
44	Effect of porosity on the effective electrical conductivity of different ceramic membranes used as separators in eletrochemical reactors. Journal of Membrane Science, 2006, 280, 536-544.	4.1	33
45	SÃntesis de membranas cerámicas para la regeneración de baños de cromado agotados. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2005, 44, 409-414.	0.9	6
46	Characterization of chromium-containing ceramic pigments by XRF and XRD. X-Ray Spectrometry, 2004, 33, 431-438.	0.9	11
47	Kinetic Study of Black Fe ₂ O ₃ â€Cr ₂ O ₃ Pigment Synthesis: I, Influence of Synthesis Time and Temperature. Journal of the American Ceramic Society, 2003, 86, 945-950.	1.9	15
48	Colorimetric study of black (Fe,Cr)2O3pigment synthesis reaction: relation between chromatic coordinates and synthesis conditions. Advances in Applied Ceramics, 2003, 102, 247-250.	0.4	5
49	Kinetic study of black (Fe,Cr)2O3pigment synthesis reaction: influence of composition and particle size. Advances in Applied Ceramics, 2003, 102, 251-256.	0.4	3
50	Stability of (Cr)CaO.SnO2.SiO2pink pigment in ceramic frits. Advances in Applied Ceramics, 2002, 101, 213-220.	0.4	7
51	Kinetic study of concentrated clay suspension gelling by dynamic viscoelasticity measurements: effect of solids and deflocculant content. Advances in Applied Ceramics, 2002, 101, 194-199.	0.4	3
52	Utilización de la teorÃa de Kubelka-Munk para optimizar el reciclado de residuos crudos de gres porcelánico. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2002, 41, 429-435.	0.9	5
53	Rheological behaviour of concentrated bimodal suspensions2: Influence of quartz and deflocculant content on clay suspension viscoelasticity. Advances in Applied Ceramics, 2001, 100, 165-170.	0.4	1
54	Synthesis Mechanism of an Iron–Chromium Ceramic Pigment. Journal of the American Ceramic Society, 2000, 83, 29-32.	1.9	30