Edward D Zaron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6127740/publications.pdf Version: 2024-02-01

Ευωλρο Π Ζλρον

#	Article	IF	CITATIONS
1	Baroclinic Tidal Energetics Inferred from Satellite Altimetry. Journal of Physical Oceanography, 2022, 52, 1015-1032.	1.7	6
2	The SARAL/AltiKa mission: A step forward to the future of altimetry. Advances in Space Research, 2021, 68, 808-828.	2.6	21
3	Assessing the effects of sea-state related errors on the precision of high-rate Jason-3 altimeter sea level data. Advances in Space Research, 2021, 68, 963-977.	2.6	17
4	Accuracy assessment of global internal-tide models using satellite altimetry. Ocean Science, 2021, 17, 147-180.	3.4	28
5	An Assessment of Global Ocean Barotropic Tide Models Using Geodetic Mission Altimetry and Surface Drifters. Journal of Physical Oceanography, 2021, 51, 63-82.	1.7	9
6	Understanding of Contemporary Regional Seaâ€Level Change and the Implications for the Future. Reviews of Geophysics, 2020, 58, e2019RG000672.	23.0	74
7	Surface Kinetic Energy Distributions in the Global Oceans From a Highâ€Resolution Numerical Model and Surface Drifter Observations. Geophysical Research Letters, 2019, 46, 9757-9766.	4.0	34
8	Toward Realistic Nonstationarity of Semidiurnal Baroclinic Tides in a Hydrodynamic Model. Journal of Geophysical Research: Oceans, 2019, 124, 6632-6642.	2.6	23
9	Baroclinic Tidal Sea Level from Exact-Repeat Mission Altimetry. Journal of Physical Oceanography, 2019, 49, 193-210.	1.7	62
10	Global Observations of Fine-Scale Ocean Surface Topography With the Surface Water and Ocean Topography (SWOT) Mission. Frontiers in Marine Science, 2019, 6, .	2.5	204
11	Simultaneous Estimation of Ocean Tides and Underwater Topography in the Weddell Sea. Journal of Geophysical Research: Oceans, 2019, 124, 3125-3148.	2.6	8
12	Predictability of non-phase-locked baroclinic tides in the Caribbean Sea. Ocean Science, 2019, 15, 1287-1305.	3.4	7
13	Ocean and Ice Shelf Tides from CryoSat-2 Altimetry. Journal of Physical Oceanography, 2018, 48, 975-993.	1.7	6
14	Seasonality of Tides in Southeast Asian Waters. Journal of Physical Oceanography, 2018, 48, 1169-1190.	1.7	27
15	Aliased Tidal Variability in Mesoscale Sea Level Anomaly Maps. Journal of Atmospheric and Oceanic Technology, 2018, 35, 2421-2435.	1.3	17
16	Internal Gravity Waves and Meso/Submesoscale Currents in the Ocean: Anticipating High-Resolution Observations from the SWOT Swath Altimeter Mission. Bulletin of the American Meteorological Society, 2018, 99, ES155-ES157.	3.3	7
17	Using an altimeter-derived internal tide model to remove tides from in situ data. Geophysical Research Letters, 2017, 44, 4241-4245.	4.0	17
18	Mapping the nonstationary internal tide with satellite altimetry. Journal of Geophysical Research: Oceans, 2017, 122, 539-554.	2.6	57

EDWARD D ZARON

#	Article	IF	CITATIONS
19	Topographic and frictional controls on tides in the Sea of Okhotsk. Ocean Modelling, 2017, 117, 1-11.	2.4	8
20	Tidal Variability Related to Sea Level Variability in the Pacific Ocean. Journal of Geophysical Research: Oceans, 2017, 122, 8445-8463.	2.6	63
21	Coupling of sea level and tidal range changes, with implications for future water levels. Scientific Reports, 2017, 7, 17021.	3.3	71
22	Laser Doppler velocimetry using a modified computer mouse. American Journal of Physics, 2016, 84, 810-813.	0.7	1
23	On the observability of bottom topography from measurements of tidal sea surface height. Ocean Modelling, 2016, 102, 55-63.	2.4	3
24	Identification and Reduction of Retracker-Related Noise in Altimeter-Derived Sea Surface Height Measurements. Journal of Atmospheric and Oceanic Technology, 2016, 33, 201-210.	1.3	20
25	Recent progress in performance evaluations and near real-time assessment of operational ocean products. Journal of Operational Oceanography, 2015, 8, s221-s238.	1.2	41
26	Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster. Frontiers of Earth Science, 2015, 9, 605-636.	2.1	13
27	Time-Variable Refraction of the Internal Tide at the Hawaiian Ridge. Journal of Physical Oceanography, 2014, 44, 538-557.	1.7	73
28	Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution?. Ocean Dynamics, 2014, 64, 1093-1120.	2.2	42
29	An Analysis of Secular Change in Tides at Open-Ocean Sites in the Pacific. Journal of Physical Oceanography, 2014, 44, 1704-1726.	1.7	39
30	Adaptation of Classical Tidal Harmonic Analysis to Nonstationary Tides, with Application to River Tides. Journal of Atmospheric and Oceanic Technology, 2013, 30, 569-589.	1.3	86
31	Bottom Topography Mapping via Nonlinear Data Assimilation. Journal of Atmospheric and Oceanic Technology, 2011, 28, 1606-1623.	1.3	18
32	Initial expansion of the Columbia River tidal plume: Theory and remote sensing observations. Journal of Geophysical Research, 2010, 115, .	3.3	19
33	A New Look at Richardson Number Mixing Schemes for Equatorial Ocean Modeling. Journal of Physical Oceanography, 2009, 39, 2652-2664.	1.7	46
34	Baroclinic tidal generation in the Kauai Channel inferred from high-frequency radio Doppler current meters. Dynamics of Atmospheres and Oceans, 2009, 48, 93-120.	1.8	23
35	The impact of the M2 internal tide on data-assimilative model estimates of the surface tide. Ocean Modelling, 2007, 18, 210-216.	2.4	7
36	Verification studies for a z-coordinate primitive-equation model: Tidal conversion at a mid-ocean ridge. Ocean Modelling, 2006, 14, 257-278.	2.4	21

#	Article	IF	CITATIONS
37	Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge. Journal of Physical Oceanography, 2006, 36, 1019-1035.	1.7	86
38	A Comparison of Data Assimilation Methods Using a Planetary Geostrophic Model. Monthly Weather Review, 2006, 134, 1316-1328.	1.4	6
39	Data Assimilation in Models with Convective Adjustment. Monthly Weather Review, 1994, 122, 2607-2613.	1.4	10