Jih-Hong Shue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6127257/publications.pdf

Version: 2024-02-01

489802 232693 2,366 53 18 48 citations g-index h-index papers 55 55 55 1728 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influences of IMF <i>B</i> _{<i>y</i>} Polarity on Dayside Electron Precipitation in Terms of Energy Channels. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	1
2	Dayside Cusp Aurorae and Ionospheric Convection Under Radial Interplanetary Magnetic Fields. Journal of Geophysical Research: Space Physics, 2021, 126, e2019JA027664.	0.8	3
3	An evaluation of space weather conditions for FORMOSAT-3 satellite anomalies. Earth, Planets and Space, 2021, 73, .	0.9	4
4	Transpolar Arcs During a Prolonged Radial Interplanetary Magnetic Field Interval. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029197.	0.8	4
5	Geomagnetic Effects in Spatial Distributions of Particle Precipitation in Terms of Particle Energy Channels. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028137.	0.8	1
6	Effects of Orbital Eccentricity and IMF Cone Angle on the Dimensions of Mercury's Magnetosphere. Astrophysical Journal, 2020, 892, 2.	1.6	10
7	Long- and Short-Term Evolutions of Magnetic Field Fluctuations in High-Speed Streams. Solar Physics, 2020, 295, 1.	1.0	6
8	Abnormal magnetospheric magnetic gradient direction reverse around the indented magnetopause. Astrophysics and Space Science, 2019, 364, 1.	0.5	4
9	Dependence of Thermodynamic Processes on Upstream Interplanetary Magnetic Field Conditions for Magnetosheath Ions. Journal of Geophysical Research: Space Physics, 2019, 124, 1866-1882.	0.8	9
10	A Systematic Study in Characteristics of Lower Band Risingâ€Tone Chorus Elements. Journal of Geophysical Research: Space Physics, 2019, 124, 9003-9016.	0.8	9
11	Formation of the Dayside Magnetopause and Its Boundary Layers Under the Radial IMF. Journal of Geophysical Research: Space Physics, 2018, 123, 3533-3547.	0.8	8
12	A method to predict magnetopause expansion in radial IMF events by MHD simulations. Journal of Geophysical Research: Space Physics, 2017, 122, 3110-3126.	0.8	11
13	Evolution of the magnetic field structure outside the magnetopause under radial IMF conditions. Journal of Geophysical Research: Space Physics, 2017, 122, 4051-4063.	0.8	16
14	Dependence of Electromagnetic Ion Cyclotron Wave Occurrence on Northâ€South Orientation of Interplanetary Magnetic Field: THEMIS Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 11,354.	0.8	5
15	A comparison of the IMF structure and the magnetic field in the magnetosheath under the radial IMF conditions. Advances in Space Research, 2016, 58, 181-187.	1.2	5
16	Global expansion of the dayside magnetopause for longâ€duration radial IMF events: Statistical study on GOES observations. Journal of Geophysical Research: Space Physics, 2016, 121, 6480-6492.	0.8	20
17	Kelvin-Helmholtz wave at the subsolar magnetopause boundary layer under radial IMF. Journal of Geophysical Research: Space Physics, 2016, 121, 9863-9879.	0.8	11
18	The fast development of solar terrestrial sciences in Taiwan. Geoscience Letters, 2016, 3, .	1.3	5

#	Article	IF	Citations
19	Solar cycle variations of magnetopause locations. Advances in Space Research, 2016, 58, 240-248.	1.2	19
20	Analysis of temperature versus density plots and their relation to the LLBL formation under southward and northward IMF orientations. Journal of Geophysical Research: Space Physics, 2015, 120, 3475-3488.	0.8	15
21	Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere. Geophysical Research Letters, 2015, 42, 8294-8301.	1.5	13
22	The dayside magnetopause location during radial interplanetary magnetic field periods: Cluster observation and model comparison. Annales Geophysicae, 2015, 33, 437-448.	0.6	8
23	A reexamination of longâ€duration radial IMF events. Journal of Geophysical Research: Space Physics, 2014, 119, 7005-7011.	0.8	29
24	Strong ionospheric fieldâ€aligned currents for radial interplanetary magnetic fields. Journal of Geophysical Research: Space Physics, 2014, 119, 3979-3995.	0.8	12
25	Possible observational evidence of contact discontinuities. Geophysical Research Letters, 2014, 41, 8228-8234.	1.5	7
26	The role of enhanced thermal pressure in the earthward motion of the Earth's magnetopause. Journal of Geophysical Research: Space Physics, 2013, 118, 3017-3026.	0.8	30
27	Dependence of the oblique propagation of ULF foreshock waves on solar wind parameters. Journal of Geophysical Research: Space Physics, 2013, 118, 4151-4160.	0.8	7
28	Uneven compression levels of Earth's magnetic fields by shocked solar wind. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	9
29	Thin magnetosheath as a consequence of the magnetopause deformation: THEMIS observations. Journal of Geophysical Research, 2010, $115, \ldots$	3.3	25
30	Magnetopause expansions for quasiâ€radial interplanetary magnetic field: THEMIS and Geotail observations. Journal of Geophysical Research, 2010, 115, .	3.3	71
31	Effects of dipole tilt angle on geomagnetic activity. Planetary and Space Science, 2009, 57, 1254-1259.	0.9	20
32	Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields. Geophysical Research Letters, 2009, 36, .	1.5	81
33	Alfvénic plasma velocity variations observed at the inner edge of the lowâ€latitude boundary layer induced by the magnetosheath mirror mode waves: A THEMIS observation. Journal of Geophysical Research, 2009, 114, .	3.3	8
34	Two classes of earthward fast flows in the plasma sheet. Journal of Geophysical Research, 2008, 113 , .	3.3	18
35	Longitudinal association between magnetotail reconnection and auroral breakup based on Geotail and Polar observations. Journal of Geophysical Research, 2008, 113, .	3.3	26
36	"Compression aurora― Particle precipitation driven by longâ€duration high solar wind ram pressure. Journal of Geophysical Research, 2007, 112, .	3.3	28

#	Article	IF	Citations
37	Reduction in the westward auroral electrojet by a southward turning of the interplanetary magnetic field: A new interpretation. Geophysical Research Letters, 2006, 33, .	1.5	1
38	A systematic study of effects of solar wind density on auroral electrojets. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	5
39	Quiet time magnetotail plasma flow: Coordinated Polar ultraviolet images and Geotail observations. Journal of Geophysical Research, 2003, 108, .	3.3	9
40	Quantitative relationships between plasma sheet fast flows and nightside auroral power. Journal of Geophysical Research, 2003, 108 , .	3.3	9
41	Effects of solar wind density on the auroral electrojets and global auroras during geomagnetic storms. Geophysical Monograph Series, 2003, , 15-22.	0.1	2
42	Solar wind density and velocity control of auroral brightness under normal interplanetary magnetic field conditions. Journal of Geophysical Research, 2002, 107, SMP 9-1-SMP 9-6.	3.3	18
43	Two-component auroras. Geophysical Research Letters, 2002, 29, 17-1-17-4.	1.5	15
44	Comparison of three magnetopause prediction models under extreme solarwind conditions. Journal of Geophysical Research, 2002, 107, SMP 3-1.	3.3	24
45	Interplanetary magnetic fieldBxasymmetry effect on auroral brightness. Journal of Geophysical Research, 2002, 107, SIA 16-1-SIA 16-10.	3.3	22
46	Effects of solar wind density on auroral electrojets. Geophysical Research Letters, 2001, 28, 2181-2184.	1.5	43
47	The quantitative relationship between auroral brightness and solar EUV Pedersen conductance. Journal of Geophysical Research, 2001, 106, 5883-5894.	3.3	49
48	Influence of interplanetary magnetic field on global auroral patterns. Journal of Geophysical Research, 2001, 106, 5913-5926.	3.3	50
49	Toward predicting the position of the magnetopause within geosynchronous orbit. Journal of Geophysical Research, 2000, 105, 2641-2656.	3.3	36
50	Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research, 1998, 103, 17691-17700.	3.3	854
51	Effects of Solar Wind Density on the Westward Electrojet. Astrophysics and Space Science Library, 1998, , 677-680.	1.0	17
52	A new functional form to study the solar wind control of the magnetopause size and shape. Journal of Geophysical Research, 1997, 102, 9497-9511.	3.3	652
53	Radial Interplanetary Magnetic Fieldâ€Induced Northâ€South Asymmetry in Solar Windâ€Magnetosphereâ€Ionosphere Coupling: A Case Study. Journal of Geophysical Research: Space Physics, 0, , .	0.8	2