Josep V Forment

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6126742/publications.pdf

Version: 2024-02-01

448610 651938 2,432 26 19 25 citations g-index h-index papers 29 29 29 5251 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Preventing and Overcoming Resistance to PARP Inhibitors: A Focus on the Clinical Landscape. Cancers, 2022, 14, 44.	1.7	16
2	Preclinical <i>In Vivo</i> Validation of the RAD51 Test for Identification of Homologous Recombination-Deficient Tumors and Patient Stratification. Cancer Research, 2022, 82, 1646-1657.	0.4	40
3	Loss of Cyclin C or CDK8 provides ATR inhibitor resistance by suppressing transcription-associated replication stress. Nucleic Acids Research, 2021, 49, 8665-8683.	6. 5	25
4	E2 enzymes in genome stability: pulling the strings behind the scenes. Trends in Cell Biology, 2021, 31, 628-643.	3.6	15
5	Derivation and maintenance of mouse haploid embryonic stem cells. Nature Protocols, 2019, 14, 1991-2014.	5.5	12
6	ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nature Communications, 2019, 10, 87.	5.8	133
7	Detection of functional protein domains by unbiased genome-wide forward genetic screening. Scientific Reports, 2018, 8, 6161.	1.6	14
8	Targeting the replication stress response in cancer. , 2018, 188, 155-167.		124
9	Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nature Communications, 2017, 8, 374.	5.8	180
10	Genome-wide genetic screening with chemically mutagenized haploid embryonic stem cells. Nature Chemical Biology, 2017, 13, 12-14.	3.9	36
11	CtIP tetramer assembly is required for DNA-end resection and repair. Nature Structural and Molecular Biology, 2015, 22, 150-157.	3.6	63
12	A flow cytometry–based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells. Nature Protocols, 2015, 10, 1297-1307.	5.5	62
13	When two is not enough: a CtIP tetramer is required for DNA repair by Homologous Recombination. Nucleus, 2015, 6, 344-348.	0.6	7
14	Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nature Cell Biology, 2014, 16, 1016-1026.	4.6	134
15	High-Affinity Glucose Transport in Aspergillus nidulans Is Mediated by the Products of Two Related but Differentially Expressed Genes. PLoS ONE, 2014, 9, e94662.	1.1	22
16	Disruption of Mouse Cenpj, a Regulator of Centriole Biogenesis, Phenocopies Seckel Syndrome. PLoS Genetics, 2012, 8, e1003022.	1.5	84
17	Chromothripsis and cancer: causes and consequences of chromosome shattering. Nature Reviews Cancer, 2012, 12, 663-670.	12.8	333
18	A highâ€throughput, flow cytometryâ€based method to quantify DNAâ€end resection in mammalian cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 922-928.	1.1	67

#	Article	IF	CITATION
19	Small-molecule–induced DNA damage identifies alternative DNA structures in human genes. Nature Chemical Biology, 2012, 8, 301-310.	3.9	576
20	CDK targeting of NBS1 promotes DNAâ€end resection, replication restart and homologous recombination. EMBO Reports, 2012, 13, 561-568.	2.0	86
21	Use of <i>Saccharomyces cerevisiae</i> and <i>Caenorhabditis elegans</i> as Model Organisms To Study the Effect of Cocoa Polyphenols in the Resistance to Oxidative Stress. Journal of Agricultural and Food Chemistry, 2011, 59, 2077-2085.	2.4	76
22	A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1. Genome Biology, 2011, 12, R78.	13.9	123
23	Structure-Specific DNA Endonuclease Mus81/Eme1 Generates DNA Damage Caused by Chk1 Inactivation. PLoS ONE, 2011, 6, e23517.	1.1	97
24	Concentration dependent effects of commonly used pesticides on activation versus inhibition of the quince (Cydonia Oblonga) polyphenol oxidase. Food and Chemical Toxicology, 2010, 48, 957-963.	1.8	14
25	Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Current Genetics, 2006, 50, 217-224.	0.8	50
26	Identification of the mstE Gene Encoding a Glucose-inducible, Low Affinity Glucose Transporter in Aspergillus nidulans. Journal of Biological Chemistry, 2006, 281, 8339-8346.	1.6	43