LuÃ-s Rato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6126236/publications.pdf Version: 2024-02-01

Ιμῶς Ρλτο

#	Article	IF	CITATIONS
1	Inherited Metabolic Memory of Highâ€Fat Diet Impairs Testicular Fatty Acid Content and Sperm Parameters. Molecular Nutrition and Food Research, 2022, 66, e2100680.	3.3	12
2	Male Infertility in the XXI Century: Are Obesogens to Blame?. International Journal of Molecular Sciences, 2022, 23, 3046.	4.1	7
3	Testicular "Inherited Metabolic Memory―of Ancestral High-Fat Diet Is Associated with Sperm sncRNA Content. Biomedicines, 2022, 10, 909.	3.2	8
4	Is Technical-Grade Chlordane an Obesogen?. Current Medicinal Chemistry, 2021, 28, 548-568.	2.4	2
5	Inheritable testicular metabolic memory of high-fat diet causes transgenerational sperm defects in mice. Scientific Reports, 2021, 11, 9444.	3.3	20
6	White Tea Intake Abrogates Markers of Streptozotocin-Induced Prediabetes Oxidative Stress in Rat Lungs'. Molecules, 2021, 26, 3894.	3.8	5
7	Plasmatic Oxidative and Metabonomic Profile of Patients with Different Degrees of Biliary Acute Pancreatitis Severity. Antioxidants, 2021, 10, 988.	5.1	7
8	The Impact of Endocrine-Disrupting Chemicals in Male Fertility: Focus on the Action of Obesogens. Journal of Xenobiotics, 2021, 11, 163-196.	6.7	9
9	Diet during early life defines testicular lipid content and sperm quality in adulthood. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E1061-E1073.	3.5	28
10	High-Fat Diet Promotes a Pro-Inflammatory Environment in Testis and Inhibits Antioxidant Defenses in the Progeny. Medical Sciences Forum, 2020, 2, .	0.5	0
11	Knockout of MCT1 results in total absence of spermatozoa, sex hormones dysregulation, and morphological alterations in the testicular tissue. Cell and Tissue Research, 2019, 378, 333-339.	2.9	7
12	Role of Reactive Oxygen Species in Diabetes-Induced Male Reproductive Dysfunction. , 2019, , 135-147.		6
13	A switch from high-fat to normal diet does not restore sperm quality but prevents metabolic syndrome. Reproduction, 2019, 158, 377-387.	2.6	40
14	The Action of Polyphenols in Diabetes Mellitus and Alzheimer's Disease: A Common Agent for Overlapping Pathologies. Current Neuropharmacology, 2019, 17, 590-613.	2.9	38
15	The effects of the obesogen tributyltin on the metabolism of Sertoli cells cultured ex vivo. Archives of Toxicology, 2018, 92, 601-610.	4.2	15
16	Energetics of the Male Reproduction. , 2018, , 451-457.		1
17	Evaluation of oxidative stress in acute pancreatitis. Pancreatology, 2018, 18, S167-S168.	1.1	0
18	Obesogens and male fertility. Obesity Reviews, 2017, 18, 109-125.	6.5	25

LuÃs Rato

#	Article	IF	CITATIONS
19	Editorial: The Aging Male: Physiology, Pathophysiology, and Therapeutic Perspectives. Current Pharmaceutical Design, 2017, 23, 4427-4428.	1.9	0
20	Fertility and Sperm Quality in the Aging Male. Current Pharmaceutical Design, 2017, 23, 4429-4437.	1.9	74
21	Sperm Maturation as a Possible Target of Obesogens. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2017, 17, .	0.5	2
22	Biochemical Changes in the Reproductive Function of the Aging Male. , 2017, , 389-411.		0
23	Environmental Cues and Sperm Quality. , 2017, , 360-388.		0
24	Testicular Cancer, Erectile Dysfunction and Male Reproductive Health. , 2017, , 291-325.		0
25	Biochemistry Behind the Journey of Spermatozoa Through the Female Reproductive Tract. , 2017, , 257-290.		0
26	White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality. Journal of Nutritional Biochemistry, 2016, 37, 83-93.	4.2	35
27	New insights on hormones and factors that modulate Sertoli cell metabolism. Histology and Histopathology, 2016, 31, 499-513.	0.7	28
28	Sirtuins: Novel Players in Male Reproductive Health. Current Medicinal Chemistry, 2016, 23, 1084-1099.	2.4	24
29	Pharmacological Relevance of Novel Biomarkers Associated with Diabetes-mellitus Related Infertility. , 2016, , 114-194.		0
30	Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis. Journal of Diabetes Research, 2015, 2015, 1-13.	2.3	43
31	White tea consumption improves cardiac glycolytic and oxidative profile of prediabetic rats. Journal of Functional Foods, 2015, 14, 102-110.	3.4	32
32	White tea consumption restores sperm quality in prediabetic rats preventing testicular oxidative damage. Reproductive BioMedicine Online, 2015, 31, 544-556.	2.4	66
33	Testosterone deficiency induced by progressive stages of diabetes mellitus impairs glucose metabolism and favors glycogenesis in mature rat Sertoli cells. International Journal of Biochemistry and Cell Biology, 2015, 66, 1-10.	2.8	50
34	Melatonin and Male Reproductive Health: Relevance of Darkness and Antioxidant Properties. Current Molecular Medicine, 2015, 15, 299-311.	1.3	35
35	Highâ€energy diets: a threat for male fertility?. Obesity Reviews, 2014, 15, 996-1007.	6.5	110
36	Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 335-344.	1.0	122

LuÃs Rato

#	Article	IF	CITATIONS
37	Melatonin alters the glycolytic profile of Sertoli cells: implications for male fertility. Molecular Human Reproduction, 2014, 20, 1067-1076.	2.8	70
38	Control of Sertoli cell metabolism by sex steroid hormones is mediated through modulation in glycolysis-related transporters and enzymes. Cell and Tissue Research, 2013, 354, 861-868.	2.9	52
39	Molecular mechanisms beyond glucose transport in diabetes-related male infertility. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 626-635.	3.8	185
40	Regulation of apoptotic signaling pathways by 5α-dihydrotestosterone and 17β-estradiol in immature rat Sertoli cells. Journal of Steroid Biochemistry and Molecular Biology, 2013, 135, 15-23.	2.5	41
41	Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cellular and Molecular Life Sciences, 2013, 70, 777-793.	5.4	161
42	Highâ€energy diets may induce a preâ€diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology, 2013, 1, 495-504.	3.5	142
43	Insulin Deprivation Decreases Caspase-Dependent Apoptotic Signaling in Cultured Rat Sertoli Cells. ISRN Urology, 2013, 2013, 1-8.	1.5	26
44	Metabolic modulation induced by oestradiol and DHT in immature rat Sertoli cells cultured <i>in vitro</i> . Bioscience Reports, 2012, 32, 61-69.	2.4	91
45	Effect of insulin deprivation on metabolism and metabolism-associated gene transcript levels of in vitro cultured human Sertoli cells. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 84-89.	2.4	108
46	Metabolic regulation is important for spermatogenesis. Nature Reviews Urology, 2012, 9, 330-338.	3.8	329
47	Influence of 5α-dihydrotestosterone and 17β-estradiol on human Sertoli cells metabolism. Journal of Developmental and Physical Disabilities, 2011, 34, e612-e620.	3.6	82
48	Regucalcin is broadly expressed in male reproductive tissues and is a new androgen-target gene in mammalian testis. Reproduction, 2011, 142, 447-456.	2.6	34
49	Tubular Fluid Secretion in the Seminiferous Epithelium: Ion Transporters and Aquaporins in Sertoli Cells. Journal of Membrane Biology, 2010, 236, 215-224.	2.1	100
50	Dietary Switch from High Fat Diet to Normal Diet During Early Adulthood Does Not Restore Sperm Quality But Prevents Onset of the Metabolic Syndrome. SSRN Electronic Journal, 0, , .	0.4	0