Shanchao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6125922/publications.pdf

Version: 2024-02-01

414303 394286 1,034 34 19 32 citations h-index g-index papers 35 35 35 1405 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evodiamine-Inspired Topoisomerase-Histone Deacetylase Dual Inhibitors: Novel Orally Active Antitumor Agents for Leukemia Therapy. Journal of Medicinal Chemistry, 2022, 65, 4818-4831.	2.9	15
2	Design, Synthesis, and Structure-Activity relationships of Evodiamine-Based topoisomerase (Top)/Histone deacetylase (HDAC) dual inhibitors. Bioorganic Chemistry, 2022, 122, 105702.	2.0	10
3	Ispinesib as an Effective Warhead for the Design of Autophagosome-Tethering Chimeras: Discovery of Potent Degraders of Nicotinamide Phosphoribosyltransferase (NAMPT). Journal of Medicinal Chemistry, 2022, 65, 7619-7628.	2.9	27
4	Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharmaceutica Sinica B, 2021, 11, 1617-1628.	5.7	40
5	Water-soluble derivatives of evodiamine: Discovery of evodiamine-10-phosphate as an orally active antitumor lead compound. European Journal of Medicinal Chemistry, 2021, 220, 113544.	2.6	16
6	Discovery of pyrazolone spirocyclohexadienone derivatives with potent antitumor activity. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126662.	1.0	16
7	Scaffold Hopping of Natural Product Evodiamine: Discovery of a Novel Antitumor Scaffold with Excellent Potency against Colon Cancer. Journal of Medicinal Chemistry, 2020, 63, 696-713.	2.9	47
8	Nicotinamide Phosphoribosyltransferase (NAMPT) Is a New Target of Antitumor Agent Chidamide. ACS Medicinal Chemistry Letters, 2020, 11, 40-44.	1.3	10
9	Evodiamine-inspired dual inhibitors of histone deacetylase 1 (HDAC1) and topoisomerase 2 (TOP2) with potent antitumor activity. Acta Pharmaceutica Sinica B, 2020, 10, 1294-1308.	5.7	38
10	Targeting fungal virulence factor by small molecules: Structure-based discovery of novel secreted aspartic protease 2 (SAP2) inhibitors. European Journal of Medicinal Chemistry, 2020, 201, 112515.	2.6	14
11	Frontispiece: Potent Dual BET/HDAC Inhibitors for Efficient Treatment of Pancreatic Cancer. Angewandte Chemie - International Edition, 2020, 59, .	7.2	O
12	Natural Product Evodiamine with Borate Trigger Unit: Discovery of Potent Antitumor Agents against Colon Cancer. ACS Medicinal Chemistry Letters, 2020, 11, 439-444.	1.3	24
13	Frontispiz: Potent Dual BET/HDAC Inhibitors for Efficient Treatment of Pancreatic Cancer. Angewandte Chemie, 2020, 132, .	1.6	О
14	Potent Dual BET/HDAC Inhibitors for Efficient Treatment of Pancreatic Cancer. Angewandte Chemie - International Edition, 2020, 59, 3028-3032.	7.2	100
15	Potent Dual BET/HDAC Inhibitors for Efficient Treatment of Pancreatic Cancer. Angewandte Chemie, 2020, 132, 3052-3056.	1.6	4
16	Novel fluorescent probes of 10-hydroxyevodiamine: autophagy and apoptosis-inducing anticancer mechanisms. Acta Pharmaceutica Sinica B, 2019, 9, 144-156.	5.7	46
17	One-Pot Synthesis of Deuterated Aldehydes from Arylmethyl Halides. Organic Letters, 2018, 20, 1712-1715.	2.4	23
18	Discovery of Novel Indoleamine 2,3-Dioxygenase 1 (IDO1) and Histone Deacetylase (HDAC) Dual Inhibitors. ACS Medicinal Chemistry Letters, 2018, 9, 312-317.	1.3	50

#	Article	IF	CITATIONS
19	Improving the Potency of Cancer Immunotherapy by Dual Targeting of IDO1 and DNA. ChemMedChem, 2018, 13, 30-36.	1.6	20
20	Identification of potent catalytic inhibitors of human DNA topoisomerase II by structure-based virtual screening. MedChemComm, 2018, 9, 1142-1146.	3.5	9
21	Small Molecules Simultaneously Inhibiting p53-Murine Double Minute 2 (MDM2) Interaction and Histone Deacetylases (HDACs): Discovery of Novel Multitargeting Antitumor Agents. Journal of Medicinal Chemistry, 2018, 61, 7245-7260.	2.9	59
22	Design, synthesis and evaluation of 4-substituted anthra [2,1-c][1,2,5]thiadiazole-6,11-dione derivatives as novel non-camptothecin topoisomerase I inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1929-1933.	1.0	12
23	Tackling Fungal Resistance by Biofilm Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 2193-2211.	2.9	91
24	Facile construction of pyrrolo[1,2-b]isoquinolin-10(5H)-ones via a redox-amination–aromatization–Friedel–Crafts acylation cascade reaction and discovery of novel topoisomerase inhibitors. Chemical Communications, 2016, 52, 9593-9596.	2.2	8
25	Novel spiropyrazolone antitumor scaffold with potent activity: Design, synthesis and structure–activity relationship. European Journal of Medicinal Chemistry, 2016, 115, 141-147.	2.6	53
26	Enantioselective organocatalytic Michael addition of isorhodanines to \hat{l}_{\pm},\hat{l}^2 -unsaturated aldehydes. Organic and Biomolecular Chemistry, 2016, 14, 3926-3933.	1.5	7
27	Meeting Organocatalysis with Drug Discovery: Asymmetric Synthesis of 3,3′-Spirooxindoles Fused with Tetrahydrothiopyrans as Novel p53-MDM2 Inhibitors. Organic Letters, 2016, 18, 1028-1031.	2.4	77
28	Discovery of highly potent triazoleantifungal agents with piperidine-oxadiazole side chains. MedChemComm, 2015, 6, 653-664.	3.5	10
29	Divergent Cascade Construction of Skeletally Diverse "Privileged―Pyrazoleâ€Derived Molecular Architectures. European Journal of Organic Chemistry, 2015, 2015, 2030-2037.	1.2	67
30	From Antidiabetic to Antifungal: Discovery of Highly Potent Triazole–Thiazolidinedione Hybrids as Novel Antifungal Agents. ChemMedChem, 2014, 9, 2639-2646.	1.6	21
31	Discovery of 1-arylpyrrolidone derivatives as potent p53–MDM2 inhibitors based on molecule fusing strategy. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2648-2650.	1.0	14
32	Design, synthesis and biological activity of piperlongumine derivatives as selective anticancer agents. European Journal of Medicinal Chemistry, 2014, 82, 545-551.	2.6	33
33	Novel benzothiazole derivatives with a broad antifungal spectrum: design, synthesis and structure–activity relationships. MedChemComm, 2013, 4, 1551.	3. 5	32
34	Facile Construction of Structurally Diverse Thiazolidinedione-Derived Compounds via Divergent Stereoselective Cascade Organocatalysis and Their Biological Exploratory Studies. ACS Combinatorial Science, 2013, 15, 298-308.	3.8	41