
Ekaterina N Ovchenkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6125882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoinduced Absorption Spectra of Donor–Acceptor Systems Based on Cobalt(II) and Manganese(III) Phthalocyanine Complexes with Femtosecond Time Resolution. Russian Journal of Physical Chemistry A, 2022, 96, 717-723.	0.6	1
2	DONOR-ACCEPTOR DYADS BASED ON OCTAKIS - SUBSTITUTED COBALT(II) PHTHALOCYANINE AND DIFFERENT FULLERO[60]/[70]PYRROLIDINES. Polyhedron, 2022, , 115908.	2.2	0
3	Meso-carbazole substituted porphyrin complexes: Synthesis and spectral properties according to experiment, DFT calculations and the prediction by machine learning methods. Dyes and Pigments, 2022, 204, 110470.	3.7	9
4	Carbazole-functionalized cobalt(ii) porphyrin axially bonded with C60/C70 derivatives: synthesis and characterization. New Journal of Chemistry, 2021, 45, 9053-9065.	2.8	8
5	Covalent and non-covalent systems based on s-, p-, and d-metal macroheterocyclic complexes and fullerenes. Russian Chemical Bulletin, 2021, 70, 239-275.	1.5	14
6	Self-organizing donor-acceptor assemblies of cobalt(II) porphyrin ligated with gold(III) porphyrin or fullero[60]pyrrolidine in liquid medium. Journal of Molecular Liquids, 2021, 326, 115306.	4.9	9
7	N Basicity of Substituted Fullero[60]/[70]pyrrolidines According to DFT/TD-DFT Calculations and Chemical Thermodynamics. Journal of Physical Chemistry A, 2021, 125, 5365-5374.	2.5	1
8	Three cobalt(II) porphyrins ligated with pyridyl-containing nanocarbon/gold(III) porphyrin for solar cells: Synthesis and characterization. Polyhedron, 2021, 203, 115223.	2.2	9
9	Recent advances in the practical use of the redox properties of manganese porphyrins. Journal of Organometallic Chemistry, 2021, 945, 121880.	1.8	6
10	Thermodynamic Basicity Constants of Highly Substituted Manganese Porphyrazines and Their Connection to the Structure of Molecules. Russian Journal of Physical Chemistry A, 2021, 95, 1791-1797.	0.6	0
11	The donor–acceptor dyad based on high substituted fullero[70]pyrrolidine-coordinated manganese (III) phthalocyanine for photoinduced electron transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 263, 120166.	3.9	3
12	Mechanism of the Self-Assembly of Donor–Acceptor Triads Based on Cobalt(II) Porphyrin Complex and Fullero[60]pyrrolidine, According to Data Obtained by Spectroscopic and Electrochemical Means. Russian Journal of Physical Chemistry A, 2020, 94, 1159-1166.	0.6	9
13	Spectral properties of supramolecular systems based on cobalt(ii)/manganese(iii) phthalocyanine and fullero[60]pyrrolidines with PET. New Journal of Chemistry, 2020, 44, 11262-11270.	2.8	10
14	Effects of a Central Atom and Peripheral Substituents on Photoinduced Electron Transfer in the Phthalocyanine–Fullerene Donor–Acceptor Solution-Processable Dyads. Journal of Physical Chemistry C, 2020, 124, 4010-4023.	3.1	27
15	Stepwise Mechanism of the Rhenium(V) Porphyrin Reaction with Pyridine, and the Chemical Structure of the Donor–Acceptor Complex. Russian Journal of Physical Chemistry A, 2019, 93, 703-709.	0.6	7
16	Equilibria and Rates of Reactions between Organic N-Bases and Substituted Manganese Phthalocyanine. Russian Journal of Physical Chemistry A, 2019, 93, 236-242.	0.6	9
17	Formation Reaction, Spectroscopy, and Photoelectrochemistry of the Donor–Acceptor Complex (5,10,15,20-Tetraphenyl-21,23H-porphinato)cobalt(II) with Pyridyl-Substituted Fullero[60]pyrrolidine. Russian Journal of Inorganic Chemistry, 2019, 64, 605-614.	1.3	18
18	New dyads based on trifluoromethylated phthalocyanine derivatives and substituted fullerene with possible application photoinduced electron transfer. Journal of Fluorine Chemistry, 2019, 224, 113-120.	1.7	15

#	Article	IF	CITATIONS
19	New paramagnets based on nanocarbon and cobalt(II)porphyrin: Magnetocaloric effect and specific heat capacity. Synthetic Metals, 2019, 253, 116-121.	3.9	10
20	Study of the photoresponse of a titanium anode coated with solution-processed fullerene-containing metal porphyrin/phthalocyanine films. Journal of Molecular Liquids, 2019, 280, 382-388.	4.9	18
21	Synthesis and properties of the novel (tetraazaporphinato)/(phthalocyaninato) manganese(III) – Pyridyl-substituted [60]fulleropyrrolidine dyads assembled through donor–acceptor bonding. Dyes and Pigments, 2018, 153, 225-232.	3.7	27
22	Complex Formation of Cobalt(II) Octakis(3,5-di-tert-butylphenoxy)phthalocyanine with 2′-(Pyridin-4-yl)-5′-(Pyridin-2-yl)-1′-(Pyridin-2-ylmethyl)-2′,4′-Dihydro-1′H-Pyrrolo[3′,4′:1,2][C60-lh][5,6]fullerene. Russian Journal of Inorganic Chemistry, 2018, 63, 1453-1460.	1.3	9
23	Synthesis and Antimicrobial Activity of a Pyridine Complex of (Acetato)[5,10,15,20-tetrakis(N-methylpyridin- 4-yl)porphinato]manganese(III) Tetratosylate. Russian Journal of General Chemistry, 2018, 88, 1657-1662.	0.8	3
24	Formation Reaction and Chemical Structure of a Novel Supramolecular Triad Based on Cobalt(II) 5,10,15,20-(Tetra-4-Tert-Butylphenyl)-21Ð ; 23ЕPorphyrin and 1-Methyl-2-(Pyridin-4â€2-Yl)- 3,4-Fullero[60]Pyrrolidine. Journal of Structural Chemistry, 2018, 59, 711-719.	1.0	22
25	Porphyrin–Fullerene Dyad Based on Indium(III) Complex. Donor–Acceptor Complex Formation Equilibrium. Russian Journal of Inorganic Chemistry, 2018, 63, 391-399.	1.3	9
26	Self-assembled cobalt(<scp>ii</scp>)porphyrin–fulleropyrrolidine triads <i>via</i> axial coordination with photoinduced electron transfer. New Journal of Chemistry, 2018, 42, 12449-12456.	2.8	31
27	Synthesis, Physicochemical Characterization and Pyridine Binding to		

#	Article	IF	CITATIONS
37	The magnetothermal properties of substituted (tetraazoporphynato)manganese(III) in aqueous suspension. Russian Journal of Physical Chemistry A, 2012, 86, 1165-1170.	0.6	6
38	Effect of peripheral modification of manganese(III) porphyrazine on its reactivity in the coordination of imidazole. Russian Journal of Organic Chemistry, 2011, 47, 1581-1587.	0.8	10
39	Role of the central manganese(III) ion in the hydrogen peroxide oxidation mechanism of (2,3,7,8,12,13,17,18-octaalkyl-5(5,10)(5,15)-phenyl(diphenyl)porphinato)chloromanganese(III). Russian Journal of Inorganic Chemistry, 2011, 56, 2001-2008.	1.3	2
40	Kinetics and mechanism of decomposition of hydrogen peroxide in the presence of manganese(III) porphyrins. Russian Journal of General Chemistry, 2010, 80, 1011-1017.	0.8	4
41	Synthesis and Characterization of Some Five-Coordinated Tetraazaporphyrin and Phthalocyanine Manganese(III) Complexes. Macroheterocycles, 2010, 3, 63-67.	0.5	17
42	Kinetics and mechanism of the reaction of manganese(III) octaethylporphine with hydrogen peroxide. Russian Journal of General Chemistry, 2007, 77, 641-647.	0.8	2
43	Metalloporphyrin receptors for bases. Russian Chemical Bulletin, 2007, 56, 660-679.	1.5	11
44	Disproportionation of hydrogen peroxide in the presence of Mn(III) complexes with various porphyrins and acid anions. Russian Journal of General Chemistry, 2006, 76, 1487-1493.	0.8	1
45	Reactivity of mixed manganese complexes with porphyrins and anionic ligands. Effect of modification of the organic part of the molecule. Russian Journal of Organic Chemistry, 2006, 42, 596-602.	0.8	2
46	Kinetics and mechanism of oxidation of manganese(III) acidoporphyrin complexes with hydrogen peroxide. Russian Journal of Inorganic Chemistry, 2006, 51, 1820-1825.	1.3	1
47	CHAPTER 20. New Nanoscaled Paramagnetic Complexes (NPCs) Based on Porphyrins/Phthalocyanines for Environmental Chemistry. RSC Detection Science, 0, , 14-47.	0.0	6
48	Donor-acceptor interactions of gold(III) porphyrins with cobalt(II) phthalocyanine: chemical structure of products, their spectral characterization and DFT study. Dalton Transactions, 0, , .	3.3	0