
Duncan J Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6125828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell cycle checkpoints and cell surface damage. BioEssays, 2022, , 2200079.	1.2	Ο
2	Topoisomerase II SUMOylation activates a metaphase checkpoint via Haspin and Aurora B kinases. Journal of Cell Biology, 2020, 219, .	2.3	20
3	Mitotic entry upon Topo II catalytic inhibition is controlled by Chk1 and Plk1. FEBS Journal, 2020, 287, 4933-4951.	2.2	3
4	MCPH1 Lack of Function Enhances Mitotic Cell Sensitivity Caused by Catalytic Inhibitors of Topo II. Genes, 2020, 11, 406.	1.0	0
5	MCPH1 is essential for cellular adaptation to the G 2 â€phase decatenation checkpoint. FASEB Journal, 2019, 33, 8363-8374.	0.2	7
6	Cell cycle regulation of condensin Smc4. Oncotarget, 2019, 10, 263-276.	0.8	12
7	Monitoring the DNA Topoisomerase II Checkpoint in Saccharomyces cerevisiae. Methods in Molecular Biology, 2018, 1703, 217-240.	0.4	0
8	Analyzing Mitotic Chromosome Structural Defects After Topoisomerase II Inhibition or Mutation. Methods in Molecular Biology, 2018, 1703, 191-215.	0.4	6
9	Cell surface damage activates a cell cycle checkpoint (comment on DOI: 10.1002/bies.201600210). BioEssays, 2017, 39, 1700022.	1.2	0
10	Non-Catalytic Roles of the Topoisomerase ll $\hat{l}\pm$ C-Terminal Domain. International Journal of Molecular Sciences, 2017, 18, 2438.	1.8	17
11	A noncatalytic function of the topoisomerase II CTD in Aurora B recruitment to inner centromeres during mitosis. Journal of Cell Biology, 2016, 213, 651-664.	2.3	38
12	Visualizing chromosome segregation in live cells. Cell Cycle, 2016, 15, 1811-1811.	1.3	0
13	Novel kinetochore function of Topoisomerase IIα. Cell Cycle, 2015, 14, 2875-2876.	1.3	Ο
14	Sororin is tethered to Cohesin SA2. Cell Cycle, 2015, 14, 1133-1133.	1.3	1
15	Pericentromere tension is self-regulated by spindle structure in metaphase. Journal of Cell Biology, 2014, 205, 313-324.	2.3	49
16	Direct Monitoring of the Strand Passage Reaction of DNA Topoisomerase II Triggers Checkpoint Activation. PLoS Genetics, 2013, 9, e1003832.	1.5	22
17	A novel chromatin tether domain controls topoisomerase $Il\hat{I}\pm$ dynamics and mitotic chromosome formation. Journal of Cell Biology, 2013, 203, 471-486.	2.3	37
18	Genome instability: Does genetic diversity amplification drive tumorigenesis?. BioEssays, 2012, 34, 963-972.	1.2	3

#	Article	IF	CITATIONS
19	Timeless makes some time for itself. Cell Cycle, 2011, 10, 2254-2254.	1.3	0

Are tumor cells protected from some anti-cancer drugs by elevated APC/C activity? (Comment on DOI:) Tj ETQq0 0 $\rho_{1.2}$ rgBT /Overlock 10 $\Gamma_{1.2}$

21	CYP3A4 Mediates Growth of Estrogen Receptor-positive Breast Cancer Cells in Part by Inducing Nuclear Translocation of Phospho-Stat3 through Biosynthesis of (±)-14,15-Epoxyeicosatrienoic Acid (EET). Journal of Biological Chemistry, 2011, 286, 17543-17559.	1.6	89
22	Determinants of Rad21 localization at the centrosome in human cells. Cell Cycle, 2010, 9, 1759-1763.	1.3	13
23	Cohesin is needed for bipolar mitosis in human cells. Cell Cycle, 2010, 9, 1764-1773.	1.3	25
24	Rad21 is required for centrosome integrity in human cells independently of its role in chromosome cohesion. Cell Cycle, 2010, 9, 1774-1780.	1.3	38
25	Chromosome cohesion and the spindle checkpoint. Cell Cycle, 2009, 8, 2733-2740.	1.3	17
26	Strong inducible knockdown of Cdc20 does not cause mitotic arrest in human somatic cells: Implications for cancer therapy?. Cell Cycle, 2009, 8, 515-517.	1.3	4
27	Decatenation: fixing your knots. Blood, 2009, 114, 1721-1722.	0.6	0
28	Introduction: Emerging Themes in DNA Topoisomerase Research. Methods in Molecular Biology, 2009, 582, 1-9.	0.4	4
29	Assaying Topoisomerase II Checkpoints in Yeast. Methods in Molecular Biology, 2009, 582, 167-187.	0.4	3
30	Cytological Analysis of Chromosome Structural Defects that Result from Topoisomerase II Dysfunction. Methods in Molecular Biology, 2009, 582, 189-207.	0.4	5
31	Aurora B kinases restrict chromosome decondensation to telophase of mitosis. Cell Cycle, 2008, 7, 293-296.	1.3	7
32	Chromosome cohesion – rings, knots, orcs and fellowship. Journal of Cell Science, 2008, 121, 2107-2114.	1.2	48
33	Kinetochore structure and spindle assembly checkpoint signaling in the budding yeast, Saccharomyces Cerevisiae. Frontiers in Bioscience - Landmark, 2008, Volume, 6787.	3.0	16
34	In Vivo Analysis of Chromosome Condensation in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2007, 18, 557-568.	0.9	57
35	Regulation of Centromeric Cohesion by Sororin Independently of the APC/C. Cell Cycle, 2007, 6, 714-724.	1.3	21
36	Cohesin Is Dispensable for Centromere Cohesion in Human Cells. PLoS ONE, 2007, 2, e318.	1.1	24

DUNCAN J CLARKE

#	Article	IF	CITATIONS
37	UBL/UBA Ubiquitin Receptor Proteins Bind a Common Tetraubiquitin Chain. Journal of Molecular Biology, 2006, 356, 1027-1035.	2.0	75
38	PIASÎ ³ Is Required for Faithful Chromosome Segregation in Human Cells. PLoS ONE, 2006, 1, e53.	1.1	65
39	Yeast UBL-UBA proteins have partially redundant functions in cell cycle control. Cell Division, 2006, 1, 28.	1.1	47
40	Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast. EMBO Journal, 2006, 25, 3627-3639.	3.5	68
41	Topoisomerase II Checkpoints: Universal Mechanisms that Regulate Mitosis. Cell Cycle, 2006, 5, 1925-1928.	1.3	52
42	A mitotic topoisomerase II checkpoint in budding yeast is required for genome stability but acts independently of Pds1/securin. Genes and Development, 2006, 20, 1162-1174.	2.7	40
43	Regulated Separation of Sister Centromeres depends on the Spindle Assembly Checkpoint but not on the Anaphase Promoting Complex/Cyclosome. Cell Cycle, 2005, 4, 1561-1575.	1.3	48
44	Separase is Required at Multiple Pre-Anaphase Cell Cycle Stages in Human Cells. Cell Cycle, 2005, 4, 1576-1584.	1.3	28
45	Evidence That the Yeast Spindle Assembly Checkpoint Has a Target Other Than the Anaphase Promoting Complex. Cell Cycle, 2005, 4, 1555-1557.	1.3	10
46	Proteasome Activity is Required for Centromere Separation Independently of Securin Degradation in Human Cells. Cell Cycle, 2005, 4, 1558-1560.	1.3	9
47	MRX (Mre11/Rad50/Xrs2) Mutants Reveal Dual Intra-S-Phase Checkpoint Systems in Budding Yeast. Cell Cycle, 2005, 4, 4073-4077.	1.3	2
48	Anaphase Promoting Complex or Cyclosome?. Cell Cycle, 2005, 4, 1585-1592.	1.3	14
49	Cdc20 in S-phase: The Banquo at Replication's Banquet. Cell Cycle, 2004, 3, 274-277.	1.3	2
50	p53 Prevents the Accumulation of Double-Strand DNA Breaks at Stalled-Replication Forks Induced by UV in Human Cells. Cell Cycle, 2004, 3, 1543-1557.	1.3	37
51	Establishment of dependence relationships between genome replication and mitosis. Journal of Cellular Biochemistry, 2003, 88, 95-103.	1.2	5
52	S-phase checkpoint controls mitosis via an APC-independent Cdc20p function. Nature Cell Biology, 2003, 5, 928-935.	4.6	38
53	Replication-Coupled Topoisomerase II Templates the Mitotic Chromosome Scaffold?. Cell Cycle, 2003, 2, 229-231.	1.3	3
54	Self-Regulating Model for Control of Replication Origin Firing in Budding Yeast. Cell Cycle, 2003, 2, 575-577.	1.3	5

DUNCAN J CLARKE

#	Article	IF	CITATIONS
55	p53-Independent checkpoint controls in a plant cell model. Biological Research, 2003, 36, 381-8.	1.5	2
56	Replication-coupled topoisomerase II templates the mitotic chromosome scaffold?. Cell Cycle, 2003, 2, 230-2.	1.3	4
57	A Topoisomerase II-Dependent Checkpoint in G2-Phase Plant Cells Can Be Bypassed by Ectopic Expression of Mitotic Cyclin B2. Cell Cycle, 2002, 1, 186-191.	1.3	15
58	DNA-Damage-Independent Checkpoints: Yeast and Higher Eukaryotes. Cell Cycle, 2002, 1, 13-29.	1.3	15
59	Proteolysis and the Cell Cycle: Introduction. Cell Cycle, 2002, 1, 231-232.	1.3	16
60	The Ubiquitin-Associated (UBA) Domain: On the Path from Prudence to Prurience. Cell Cycle, 2002, 1, 233-242.	1.3	90
61	Mitosis: Introduction. Cell Cycle, 2002, 1, 298-299.	1.3	1
62	DNA catenations that link sister chromatids until the onset of anaphase are maintained by a checkpoint mechanism. European Journal of Cell Biology, 2002, 81, 9-16.	1.6	21
63	A topoisomerase II-dependent checkpoint in G2-phase plant cells can be bypassed by ectopic expression of mitotic cyclin B2. Cell Cycle, 2002, 1, 187-92.	1.3	8
64	UBA domains mediate protein-protein interactions between two DNA damage-inducible proteins 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2001, 313, 955-963.	2.0	107
65	The Ras pathway and spindle assembly collide?. BioEssays, 2001, 23, 307-310.	1.2	13
66	UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nature Structural Biology, 2001, 8, 417-422.	9.7	297
67	Mec1p regulates Pds1p levels in S phase: complex coordination of DNA replication and mitosis. Nature Cell Biology, 2001, 3, 619-627.	4.6	41
68	A festival of cell-cycle controls. Trends in Cell Biology, 2001, 11, 445-446.	3.6	1
69	A Novel Role of the Budding Yeast Separin Esp1 in Anaphase Spindle Elongation. Journal of Cell Biology, 2001, 152, 27-40.	2.3	135
70	Dosage Suppressors of pds1 Implicate Ubiquitin-Associated Domains in Checkpoint Control. Molecular and Cellular Biology, 2001, 21, 1997-2007.	1.1	86
71	Checkpoints controlling mitosis. BioEssays, 2000, 22, 351-363.	1.2	86
72	Coordinated Spindle Assembly and Orientation Requires Clb5p-Dependent Kinase in Budding Yeast. Journal of Cell Biology, 2000, 148, 441-452.	2.3	61

DUNCAN J CLARKE

#	Article	IF	CITATIONS
73	Competence for assembly of sister chromatid cores is progressively acquired during S phase in mammalian cells. European Journal of Cell Biology, 1999, 78, 601-603.	1.6	4
74	The Pds1 anaphase inhibitor and Mec1 kinase define distinct checkpoints coupling S phase with mitosis in budding yeast. Current Biology, 1999, 9, 365-370.	1.8	45
75	Clb5-associated Kinase Activity is Required Early in the Spindle Pathway for Correct Preanaphase Nuclear Positioning in Saccharomyces cerevisiae. Journal of Cell Biology, 1998, 143, 135-145.	2.3	61
76	A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature, 1994, 372, 467-470.	13.7	315