Keming Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6125575/publications.pdf

Version: 2024-02-01

		1937685	1474206	
13	81	4	9	
papers	citations	h-index	g-index	
13	13	13	39	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	A novel spectral analysis method for distinguishing heavy metal stress of maize due to copper and lead: RDA and EMD-PSD. Ecotoxicology and Environmental Safety, 2020, 206, 111211.	6.0	23
2	A spectral characteristic analysis method for distinguishing heavy metal pollution in crops: VMD-PCA-SVM. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 255, 119649.	3.9	20
3	Spectral Characteristics and the Study of Pollution Degree of Maize Leaves Under Copper and Lead Stress. Journal of the Indian Society of Remote Sensing, 2020, 48, 21-33.	2.4	11
4	A new vegetation heavy metal pollution index for detecting the pollution degree of different varieties of maize under copper stress. Remote Sensing Letters, 2019, 10, 469-477.	1.4	5
5	Development of a new heavy metal vegetation index for improving monitoring of copper and lead concentration in corn. European Journal of Remote Sensing, 2019, 52, 632-639.	3.5	5
6	Discrimination of heavy metal crop contamination using measurements of leaf spectra. Remote Sensing Letters, 2021, 12, 278-285.	1.4	4
7	A new method that combines spectral indexes and Naive Bayes to distinguish heavy metal pollution in crops. Remote Sensing Letters, 2021, 12, 666-673.	1.4	4
8	Study on Heavy Metal in Soil Based on Spectral Second-Order Differential Gabor Transform. Journal of the Indian Society of Remote Sensing, 2019, 47, 629-638.	2.4	2
9	The Monitoring of the Pollution Degree of Maize Under Copper Stress. Journal of the Indian Society of Remote Sensing, 2020, 48, 363-371.	2.4	2
10	The New Hyperspectral Analysis Method for Distinguishing the Types of Heavy Metal Copper and Lead Pollution Elements. International Journal of Environmental Research and Public Health, 2022, 19, 7755.	2.6	2
11	Using the characteristic parameters of Hilbert marginal spectrum for indirectly estimating copper content in maize leaves under copper stress. Remote Sensing Letters, 2019, 10, 1067-1076.	1.4	1
12	Using the Hilbert–Huang spectrum transformation to estimate soil lead concentration. Remote Sensing Letters, 2021, 12, 768-777.	1.4	1
13	Predicting Copper and Lead Concentration in Crops Using Reflectance Spectroscopy Associated With Intrinsic Wavelength-Scale Decomposition Spectral Transformation. IEEE Access, 2022, 10, 52258-52272.	4.2	1