Uffe H Mortensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6125559/publications.pdf

Version: 2024-02-01

64 papers 5,227 citations

36 h-index 62 g-index

64 all docs 64
docs citations

64 times ranked 5046 citing authors

#	Article	IF	CITATIONS
1	Biosynthesis of Calipyridone A Represents a Fungal 2-Pyridone Formation without Ring Expansion in Aspergillus californicus. Organic Letters, 2022, 24, 804-808.	2.4	6
2	DIVERSIFY: A Fungal Multispecies Gene Expression Platform. ACS Synthetic Biology, 2021, 10, 579-588.	1.9	19
3	Genetic origin of homopyrones, a rare type of hybrid phenylpropanoid- and polyketide-derived yellow pigments from Aspergillus homomorphus. Applied Microbiology and Biotechnology, 2021, 105, 5113-5121.	1.7	4
4	Glycoengineering of Aspergillus nidulans to produce precursors for humanized N-glycan structures. Metabolic Engineering, 2021, 67, 153-163.	3.6	10
5	A CRISPR/Cas9 Method Facilitates Efficient Oligo-Mediated Gene Editing in Debaryomyces Hansenii. Synthetic Biology, 2021, 6, ysab031.	1.2	11
6	A comparative genomics study of 23 Aspergillus species from section Flavi. Nature Communications, 2020, 11, 1106.	5.8	125
7	Acurin A, a novel hybrid compound, biosynthesized by individually translated PKS- and NRPS-encoding genes in Aspergillus aculeatus. Fungal Genetics and Biology, 2020, 139, 103378.	0.9	16
8	The Aspergillus fumigatus Phosphoproteome Reveals Roles of High-Osmolarity Glycerol Mitogen-Activated Protein Kinases in Promoting Cell Wall Damage and Caspofungin Tolerance. MBio, 2020, 11, .	1.8	27
9	Growing a circular economy with fungal biotechnology: a white paper. Fungal Biology and Biotechnology, 2020, 7, 5.	2.5	228
10	10 Filamentous Fungi as Hosts for Heterologous Production of Proteins and Secondary Metabolites in the Post-Genomic Era., 2020,, 227-265.		0
11	Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genetics and Biology, 2019, 130, 107-121.	0.9	64
12	Cpf1 enables fast and efficient genome editing in Aspergilli. Fungal Biology and Biotechnology, 2019, 6, 6.	2.5	52
13	Linking secondary metabolites to gene clusters through genome sequencing of six diverse <i>Aspergillus</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E753-E761.	3.3	126
14	Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli. Fungal Genetics and Biology, 2018, 115, 78-89.	0.9	142
15	On the biosynthetic origin of carminic acid. Insect Biochemistry and Molecular Biology, 2018, 96, 51-61.	1.2	12
16	Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nature Genetics, 2018, 50, 1688-1695.	9.4	160
17	Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation. Nature Communications, 2018, 9, 2587.	5.8	85
18	Heterologous production of the widely used natural food colorant carminic acid in Aspergillus nidulans. Scientific Reports, 2018, 8, 12853.	1.6	35

#	Article	IF	CITATIONS
19	Genome Editing: CRISPR-Cas9. Methods in Molecular Biology, 2018, 1775, 119-132.	0.4	7
20	Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing. ACS Synthetic Biology, 2017, 6, 62-68.	1.9	61
21	Editorial: 3Rs tightly intertwined to maintain genome stability. FEMS Yeast Research, 2017, 17, fox003.	1.1	1
22	Genes Linked to Production of Secondary Metabolites in Talaromyces atroroseus Revealed Using CRISPR-Cas9. PLoS ONE, 2017, 12, e0169712.	1.1	74
23	Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biology and Biotechnology, 2016, 3, 6.	2.5	208
24	High-resolution kinetics and modeling of hydrogen peroxide degradation in live cells. Free Radical Biology and Medicine, 2016, 101, 143-153.	1.3	13
25	SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination. DNA Repair, 2016, 42, 11-25.	1.3	9
26	Quantification of oxidative stress phenotypes based on high-throughput growth profiling of protein kinase and phosphatase knockouts. FEMS Yeast Research, 2016, 16, fov101.	1.1	8
27	Investigation of a 6â€MSA Synthase Gene Cluster in <i>Aspergillus aculeatus</i> Reveals 6â€MSAâ€derived Aculinic Acid, Aculins A–B and Epiâ€Aculinâ€A. ChemBioChem, 2015, 16, 2200-2204.	1.3	20
28	A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi. PLoS ONE, 2015, 10, e0133085.	1.1	484
29	Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-Î ² -glucoside production. Metabolic Engineering Communications, 2015, 2, 99-108.	1.9	37
30	Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins. Current Opinion in Biotechnology, 2015, 36, 122-128.	3.3	18
31	Characterization of four new antifungal yanuthones from Aspergillus niger. Journal of Antibiotics, 2015, 68, 201-205.	1.0	26
32	EasyClone: method for iterative chromosomal integration of multiple genes Saccharomyces cerevisiae. FEMS Yeast Research, 2014, 14, 238-248.	1.1	236
33	Molecular and Chemical Characterization of the Biosynthesis of the 6-MSA-Derived Meroterpenoid Yanuthone D in Aspergillus niger. Chemistry and Biology, 2014, 21, 519-529.	6.2	84
34	A novel platform for heterologous gene expression in Trichoderma reesei (Teleomorph Hypocrea) Tj ETQq0 0 0 r	gBT <u>/</u> Overl	ock 10 Tf 50 1
35	Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae. Microbial Cell Factories, 2013, 12, 31.	1.9	53
36	Supercluster takes a walk on the wild side. Trends in Microbiology, 2013, 21, 617-618.	3 . 5	0

#	Article	IF	CITATIONS
37	Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E99-107.	3.3	211
38	Heterologous Reconstitution of the Intact Geodin Gene Cluster in Aspergillus nidulans through a Simple and Versatile PCR Based Approach. PLoS ONE, 2013, 8, e72871.	1.1	91
39	Genetics of Polyketide Metabolism in Aspergillus nidulans. Metabolites, 2012, 2, 100-133.	1.3	37
40	Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metabolic Engineering, 2012, 14, 104-111.	3.6	244
41	A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiology Letters, 2011, 321, 157-166.	0.7	114
42	Molecular Basis for Mycophenolic Acid Biosynthesis in Penicillium brevicompactum. Applied and Environmental Microbiology, 2011, 77, 3035-3043.	1.4	130
43	Versatile Enzyme Expression and Characterization System for Aspergillus nidulans, with the Penicillium brevicompactum Polyketide Synthase Gene from the Mycophenolic Acid Gene Cluster as a Test Case. Applied and Environmental Microbiology, 2011, 77, 3044-3051.	1.4	86
44	Diversion of Flux toward Sesquiterpene Production in <i>Saccharomyces cerevisiae</i> by Fusion of Host and Heterologous Enzymes. Applied and Environmental Microbiology, 2011, 77, 1033-1040.	1.4	194
45	The rad52-Y66A allele alters the choice of donor template during spontaneous chromosomal recombination. DNA Repair, 2010, 9, 23-32.	1.3	7
46	A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host. Protein Science, 2010, 19, 579-592.	3.1	4
47	Role of the Rad52 Amino-terminal DNA Binding Activity in DNA Strand Capture in Homologous Recombination. Journal of Biological Chemistry, 2009, 284, 33275-33284.	1.6	50
48	Rad52. Current Biology, 2009, 19, R676-R677.	1.8	80
49	Rad52 multimerization is important for its nuclear localization in Saccharomyces cerevisiae. DNA Repair, 2008, 7, 57-66.	1.3	18
50	Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genetics and Biology, 2008, 45, 165-170.	0.9	64
51	Molecular Anatomy of the Recombination Mediator Function of Saccharomyces cerevisiae Rad52. Journal of Biological Chemistry, 2008, 283, 12166-12174.	1.6	56
52	Interaction with RPA Is Necessary for Rad52 Repair Center Formation and for Its Mediator Activity. Journal of Biological Chemistry, 2008, 283, 29077-29085.	1.6	72
53	Transient Marker System for Iterative Gene Targeting of a Prototrophic Fungus. Applied and Environmental Microbiology, 2007, 73, 7240-7245.	1.4	12
54	Rad52 and Rad59 exhibit both overlapping and distinct functions. DNA Repair, 2007, 6, 27-37.	1.3	34

#	Article	IF	CITATION
55	Efficient PCR-based gene targeting with a recyclable marker for Aspergillus nidulans. Fungal Genetics and Biology, 2006, 43, 54-64.	0.9	139
56	Multiple start codons and phosphorylation result in discrete Rad52 protein species. Nucleic Acids Research, 2006, 34, 2587-2597.	6.5	38
57	The Role of DNA Double-Strand Breaks in Spontaneous Homologous Recombination in S. cerevisiae. PLoS Genetics, 2006, 2, e194.	1.5	82
58	Identification of the Entner-Doudoroff pathway in an antibiotic-producing actinomycete species. Molecular Microbiology, 2004, 52, 895-902.	1.2	39
59	Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nature Cell Biology, 2003, 5, 572-577.	4.6	388
60	Cell Cycle-Regulated Centers of DNA Double-Strand Break Repair. Cell Cycle, 2003, 2, 477-481.	1.3	53
61	Interaction with Rad51 Is Indispensable for Recombination Mediator Function of Rad52. Journal of Biological Chemistry, 2002, 277, 40132-40141.	1.6	102
62	A Molecular Genetic Dissection of the Evolutionarily Conserved N Terminus of Yeast Rad52. Genetics, 2002, 161, 549-562.	1.2	73
63	Cloning-Free PCR-Based Allele Replacement Methods. Genome Research, 1997, 7, 1174-1183.	2.4	162
64	Direct Association between the Yeast Rad51 and Rad54 Recombination Proteins. Journal of Biological Chemistry, 1996, 271, 33181-33186.	1.6	153