
Malcolm Yates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/61255/publications.pdf Version: 2024-02-01

MALCOLM YATES

#	Article	lF	CITATIONS
1	Preparation, characterization and in vitro osteoblast growth of waste-derived biomaterials. RSC Advances, 2014, 4, 12630-12639.	3.6	9
2	Hydrotalcite-like compounds: A way to recover a hazardous waste in the aluminium tertiary industry. Applied Clay Science, 2014, 95, 41-49.	5.2	32
3	Design of activated carbon–clay composites for effluent decontamination. Microporous and Mesoporous Materials, 2012, 154, 87-92.	4.4	12
4	Renewable fine chemicals from rice and citric subproducts: Ecomaterials. Applied Catalysis B: Environmental, 2011, 106, 488-493.	20.2	20
5	Biomaterials from beer manufacture waste for bone growth scaffolds. Green Chemistry Letters and Reviews, 2011, 4, 229-233.	4.7	17
6	Pore design of pelletised VOX/ZrO2-SO4/Sepiolite composite catalysts. Studies in Surface Science and Catalysis, 2010, , 739-742.	1.5	1
7	Sustainable p-cymene and hydrogen from limonene. Applied Catalysis A: General, 2010, 387, 141-146.	4.3	63
8	Structured catalysts containing Co, Ba and K supported on modified natural sepiolite for the abatement of diesel exhaust pollutants. Chemical Engineering Journal, 2010, 157, 530-538.	12.7	18
9	SCR activity of conformed CuOX/ZrO2-SO4 catalysts. Studies in Surface Science and Catalysis, 2010, , 735-738.	1.5	1
10	Mechanical and textural properties of extruded materials manufactured with AlFe and AlCeFe pillared bentonites. Applied Clay Science, 2010, 47, 283-289.	5.2	30
11	Pd/γ-Al2O3 monolithic catalysts for NOx reduction with CH4 in excess of O2: Effect of precursor salt. Chemical Engineering Journal, 2009, 150, 8-14.	12.7	20
12	Effect of sulphuric acid pretreatment concentration on the behaviour of CoOX/γ-Al2O3-SO4 monolithic catalysts in the lean CH4-SCR process. Applied Catalysis B: Environmental, 2009, 91, 423-427.	20.2	17
13	Characterisation and reactivity of Re/carbon catalysts in hydrodesulphurisation of dibenzothiophene: Effect of textural and chemical properties of support. Applied Catalysis A: General, 2009, 358, 26-31.	4.3	19
14	Synthesis of p-cymene from limonene, a renewable feedstock. Applied Catalysis B: Environmental, 2008, 81, 218-224.	20.2	94
15	Promoter effect of Co on the catalytic activity of Re/γ-Al2O3 catalysts for the HDS and HDN of gas oil. Applied Catalysis A: General, 2008, 350, 6-15.	4.3	10
16	On the Preparation of TiO ₂ â^'Sepiolite Hybrid Materials for the Photocatalytic Degradation of TCE: Influence of TiO ₂ Distribution in the Mineralization. Environmental Science & Technology, 2008, 42, 5892-5896.	10.0	66
17	Porosity of freeze-dried Î ³ -Al2O3 powders. Ceramics International, 2007, 33, 1165-1169.	4.8	8
18	Promotion of Re/Al2O3 and Re/C catalysts by Ni sulfide in the HDS and HDN of gas oil: Effects of Ni loading and support. Applied Catalysis A: General, 2007, 319, 218-229.	4.3	14

MALCOLM YATES

#	Article	IF	CITATIONS
19	Nitrous oxide formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts. Applied Catalysis B: Environmental, 2007, 70, 330-334.	20.2	45
20	Tailor-made high porosity VOC oxidation catalysts prepared by a single-step procedure. Applied Catalysis B: Environmental, 2007, 73, 128-134.	20.2	20
21	Influence of sulphate doping on Pd/zirconia based catalysts for the selective catalytic reduction of nitrogen oxides with methane. Applied Catalysis B: Environmental, 2007, 71, 254-261.	20.2	23
22	Application of Mercury Porosimetry to Predict the Porosity and Strength of Ceramic Catalyst Supports. Particle and Particle Systems Characterization, 2006, 23, 94-100.	2.3	5
23	Selective catalytic reduction of NOx by methane in excess oxygen over Rh based aluminium pillared clays. Applied Catalysis B: Environmental, 2006, 64, 161-170.	20.2	22
24	Development of a new Rh/TiO2–sepiolite monolithic catalyst for N2O decomposition. Applied Catalysis B: Environmental, 2006, 64, 302-311.	20.2	62
25	Influence of support acid pretreatment on the behaviour of CoOx/γ-alumina monolithic catalysts in the CH4-SCR reaction. Applied Catalysis B: Environmental, 2006, 67, 270-278.	20.2	15
26	Novel One-Step Synthesis of Porous-Supported Catalysts by Activated-Carbon Templating. Advanced Materials, 2006, 18, 1162-1165.	21.0	30
27	New TiO2 monolithic supports based on the improvement of the porosity. Catalysis Today, 2005, 105, 499-506.	4.4	26
28	N2O formation in the selective catalytic reduction of NOx with NH3 at low temperature on CuO-supported monolithic catalysts. Journal of Catalysis, 2005, 229, 227-236.	6.2	71
29	Rh/γ-Al2O3–sepiolite monolithic catalysts for decomposition of N2O traces. Applied Catalysis B: Environmental, 2005, 55, 57-64.	20.2	29
30	N2O formation in the ammonia oxidation and in the SCR process with V2O5-WO3 catalysts. Catalysis Today, 2005, 107-108, 120-125.	4.4	99
31	CuO/NiO monolithic catalysts for NOx removal from nitric acid plant flue gas. Chemical Engineering Journal, 2004, 97, 1-9.	12.7	42
32	Influence of zirconia raw materials on the development of DeNOx monolithic catalysts. Applied Catalysis B: Environmental, 2003, 44, 333-346.	20.2	12
33	Vapour adsorption capacity of controlled porosity honeycomb monoliths. Microporous and Mesoporous Materials, 2003, 65, 219-231.	4.4	45
34	Effect of Re loading on the structure, activity and selectivity of Re/C catalysts in hydrodenitrogenation and hydrodesulphurisation of gas oil. Applied Catalysis A: General, 2003, 240, 151-160.	4.3	31
35	Microwave decomposition of a chlorinated pesticide (Lindane) supported on modified sepiolites. Applied Clay Science, 2002, 22, 103-113.	5.2	50
36	Pillared clay and zirconia-based monolithic catalysts for selective catalytic reduction of nitric oxide by methane. Catalysis Today, 2001, 69, 233-239.	4.4	37

MALCOLM YATES

#	Article	IF	CITATIONS
37	Honeycomb monoliths of activated carbons for effluent gas purification. Microporous and Mesoporous Materials, 2000, 37, 201-208.	4.4	86
38	Influence of the operation time on the performance of a new SCR monolithic catalyst. Catalysis Today, 1996, 27, 9-13.	4.4	10
39	The performance of a new monolithic SCR catalyst in a life test with real exhaust gases. Effect on the textural nature. Coal Science and Technology, 1995, , 1807-1810.	0.0	0
40	Characterization of alumina:sepiolite monoliths for use as industrial catalyst supports. Journal of Materials Science, 1994, 29, 5927-5933.	3.7	13