Meixian Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6125452/publications.pdf

Version: 2024-02-01

37	1,245	20	35
papers	citations	h-index	g-index
37	37	37	1185
all docs	docs citations	times ranked	citing authors

#	Article	lF	Citations
1	What roles can water-stressed vegetation play in agricultural droughts?. Science of the Total Environment, 2022, 803, 149810.	8.0	11
2	Climate and vegetation seasonality play comparable roles in water partitioning within the Budyko framework. Journal of Hydrology, 2022, 605, 127373.	5.4	12
3	Climate Rather Than Vegetation Changes Dominate Changes in Effective Vegetation Available Water Capacity. Water Resources Research, 2022, 58, .	4.2	11
4	Topography regulates the responses of water partitioning to climate and vegetation seasonality. Science of the Total Environment, 2022, 838, 156028.	8.0	3
5	Water depletion of climax forests over humid karst terrain: Patterns, controlling factors and implications. Agricultural Water Management, 2021, 244, 106541.	5 . 6	14
6	Identifying rainfall threshold of flash flood using entropy decision approach and hydrological model method. Natural Hazards, 2021, 108, 1427-1448.	3.4	4
7	A Modified Evaporation Model Indicates That the Effects of Air Warming on Global Drying Trends Have Been Overestimated. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035153.	3.3	4
8	A Physical Agricultural Drought Index Based on Root Zone Water Availability: Model Development and Application. Geophysical Research Letters, 2020, 47, e2020GL088553.	4.0	6
9	An Improved Optimization Scheme for Representing Hillslopes and Depressions in Karst Hydrology. Water Resources Research, 2020, 56, e2019WR026038.	4.2	18
10	Hysteresis in sap flow and its controlling mechanisms for a deciduous broad-leaved tree species in a humid karst region. Science China Earth Sciences, 2019, 62, 1744-1755.	5 . 2	22
11	UAV based soil moisture remote sensing in a karst mountainous catchment. Catena, 2019, 174, 478-489.	5 . O	42
12	Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of the Total Environment, 2019, 650, 2657-2665.	8.0	127
13	Dam construction impacts on multiscale characterization of sediment discharge in two typical karst watersheds of southwest China. Journal of Hydrology, 2018, 558, 42-54.	5.4	27
14	New drought index indicates that land surface changes might have enhanced drying tendencies over the Loess Plateau. Ecological Indicators, 2018, 89, 716-724.	6.3	12
15	Why do karst catchments exhibit higher sensitivity to climate change? Evidence from a modified Budyko model. Advances in Water Resources, 2018, 122, 238-250.	3.8	23
16	Comparing evapotranspiration characteristics and environmental controls for three agroforestry ecosystems in a subtropical humid karst area. Journal of Hydrology, 2018, 563, 1042-1050.	5.4	33
17	Comparing ET-VPD hysteresis in three agroforestry ecosystems in a subtropical humid karst area. Agricultural Water Management, 2018, 208, 454-464.	5. 6	9
18	A new drought index that considers the joint effects of climate and land surface change. Water Resources Research, 2017, 53, 3262-3278.	4.2	60

#	Article	IF	Citations
19	State-space prediction of spring discharge in a karst catchment in southwest China. Journal of Hydrology, 2017, 549, 264-276.	5.4	43
20	Decreasing spatial variability of drought in southwest China during 1959–2013. International Journal of Climatology, 2017, 37, 4610-4619.	3 . 5	23
21	Monthly sediment discharge changes and estimates in a typical karst catchment of southwest China. Journal of Hydrology, 2017, 555, 95-107.	5.4	41
22	Developing pedotransfer functions to estimate the S-index for indicating soil quality. Ecological Indicators, 2017, 83, 338-345.	6.3	24
23	Annual Runoff is Highly Linked to Precipitation Extremes in Karst Catchments of Southwest China. Journal of Hydrometeorology, 2017, 18, 2745-2759.	1.9	38
24	Effects of Rice-Wheat Rotation and Afforestation on Microbial Biomass Carbon in Coastal Salt-Affected Soils of Eastern China. Pedosphere, 2017, 27, 938-948.	4.0	3
25	Effects of "Grain for Green―program on soil hydrologic functions in karst landscapes, southwestern China. Agriculture, Ecosystems and Environment, 2017, 247, 120-129.	5. 3	58
26	Enhancing pedotransfer functions (PTFs) using soil spectral reflectance data for estimating saturated hydraulic conductivity in southwestern China. Catena, 2017, 158, 350-356.	5.0	17
27	Assessing the Spatial and Temporal Patterns of Seasonal Precipitation Extremes and the Potential Influencing Factors in Dongting Lake Basin, China. Water (Switzerland), 2016, 8, 558.	2.7	7
28	Fighting against water crisis in Chinaâ€"A glimpse of water regime shift at county level. Environmental Science and Policy, 2016, 61, 33-41.	4.9	14
29	Quantifying the impacts of climate and human activities on water and sediment discharge in a karst region of southwest China. Journal of Hydrology, 2016, 542, 836-849.	5.4	144
30	Karst catchments exhibited higher degradation stress from climate change than the non-karst catchments in southwest China: An ecohydrological perspective. Journal of Hydrology, 2016, 535, 173-180.	5 . 4	83
31	Effects of Napier grass management on soil hydrologic functions in a karst landscape, southwestern China. Soil and Tillage Research, 2016, 157, 83-92.	5.6	25
32	Decreasing spatial variability in precipitation extremes in southwestern China and the local/largeâ€scale influencing factors. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6480-6488.	3.3	50
33	Spatial Downscaling of TRMM Precipitation Product Using a Combined Multifractal and Regression Approach: Demonstration for South China. Water (Switzerland), 2015, 7, 3083-3102.	2.7	27
34	Evaluation of high-resolution satellite rainfall products using rain gauge data over complex terrain in southwest China. Theoretical and Applied Climatology, 2015, 119, 203-219.	2.8	26
35	Is southwestern China experiencing more frequent precipitation extremes?. Environmental Research Letters, 2014, 9, 064002.	5.2	122
36	Distribution and dynamics of soil water and salt under different drip irrigation regimes in northwest China. Irrigation Science, 2013, 31, 675-688.	2.8	51

#	Article	IF	CITATIONS
37	A New Soil Sampling Design in Coastal Saline Region Using EM38 and VQT Method. Clean - Soil, Air, Water, 2012, 40, 972-979.	1.1	11