Yang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6124826/publications.pdf Version: 2024-02-01

ΥλΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Integrative analyses of metabolome and genomeâ€wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (<i>Actinidia chinensis</i>). New Phytologist, 2022, 233, 373-389.	7.3	100
2	The unexpected flavone synthase-like activity of polyphenol oxidase in tomato. Food Chemistry, 2022, 377, 131958.	8.2	9
3	SIWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. New Phytologist, 2022, 234, 164-178.	7.3	52
4	Chicoric acid biosynthesis during seed germination provides purple coneflower with better allelochemical. Industrial Crops and Products, 2022, 177, 114572.	5.2	1
5	Linking environmental signals to plant metabolism: The combination of field trials and environment simulators. Molecular Plant, 2022, 15, 213-215.	8.3	12
6	Substrate promiscuity of acyltransferases contributes to the diversity of hydroxycinnamic acid derivatives in purple coneflower. Plant Journal, 2022, 110, 802-813.	5.7	4
7	Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. Journal of Experimental Botany, 2022, 73, 5818-5827.	4.8	30
8	Genome-wide characterization of 2-oxoglutarate and Fe(II)-dependent dioxygenase family genes in tomato during growth cycle and their roles in metabolism. BMC Genomics, 2021, 22, 126.	2.8	22
9	The Yin and Yang of traditional Chinese and Western medicine. Medicinal Research Reviews, 2021, 41, 3182-3200.	10.5	37
10	Versatility in acyltransferase activity completes chicoric acid biosynthesis in purple coneflower. Nature Communications, 2021, 12, 1563.	12.8	45
11	A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis. Nature Communications, 2021, 12, 3531.	12.8	66
12	Diversity of antioxidant ingredients among Echinacea species. Industrial Crops and Products, 2021, 170, 113699.	5.2	9
13	Chicoric acid provides better ultraviolet protection than the sum of its substrates in purple coneflower plants. Industrial Crops and Products, 2021, 170, 113778.	5.2	5
14	Ethylene response factor AcERF91 affects ascorbate metabolism via regulation of GDP-galactose phosphorylase encoding gene (AcGGP3) in kiwifruit. Plant Science, 2021, 313, 111063.	3.6	12
15	Melatonin in plants: what we know and what we don't. Food Quality and Safety, 2021, 5, .	1.8	10
16	Editorial: Exploring and Engineering Plant Specialized Metabolism: Latest Advances and New Horizons. Frontiers in Plant Science, 2021, 12, 783465.	3.6	0
17	Trichome regulator SlMIXTAâ€like directly manipulates primary metabolism in tomato fruit. Plant Biotechnology Journal, 2020, 18, 354-363.	8.3	50
18	A Transcriptional Network Makes Normal Tomato Fruit Not Purple. Molecular Plant, 2020, 13, 11-13.	8.3	3

YANG ZHANG

#	Article	IF	CITATIONS
19	EgMIXTA1, a MYB-Type Transcription Factor, Promotes Cuticular Wax Formation in Eustoma grandiflorum Leaves. Frontiers in Plant Science, 2020, 11, 524947.	3.6	5
20	Close arrangement of <scp><i>CARK3</i></scp> and <scp><i>PMEIL</i></scp> affects <scp>ABA</scp> â€mediated pollen sterility in <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2020, 43, 2699-2711.	5.7	12
21	MicroTom Metabolic Network: Rewiring Tomato Metabolic Regulatory Network throughout the Growth Cycle. Molecular Plant, 2020, 13, 1203-1218.	8.3	107
22	Like Heterochromatin Protein 1b represses fruit ripening via regulating the H3K27me3 levels in ripeningâ€related genes in tomato. New Phytologist, 2020, 227, 485-497.	7.3	27
23	Can the world's favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites?. Plant Cell Reports, 2018, 37, 1443-1450.	5.6	85
24	Next-Generation Plant Metabolic Engineering, Inspired by an Ancient Chinese Irrigation System. Molecular Plant, 2018, 11, 47-57.	8.3	46
25	Database Resources of the BIG Data Center in 2018. Nucleic Acids Research, 2018, 46, D14-D20.	14.5	128
26	New Components of the Lignin Biosynthetic Metabolon. Trends in Plant Science, 2018, 23, 557-559.	8.8	5
27	A specialized flavone biosynthetic pathway has evolved in the medicinal plant, <i>Scutellaria baicalensis</i> . Science Advances, 2016, 2, e1501780.	10.3	165
28	The I-TASSER Suite: protein structure and function prediction. Nature Methods, 2015, 12, 7-8.	19.0	4,923
29	Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nature Communications, 2015, 6, 8635.	12.8	303
30	Different ROS-Scavenging Properties of Flavonoids Determine Their Abilities to Extend Shelf Life of Tomato. Plant Physiology, 2015, 169, pp.00346.2015.	4.8	53
31	Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 2014, 19, 81-90.	7.1	454
32	Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology, 2013, 23, 1094-1100.	3.9	292
33	Accumulation of anthocyanins in tomato skin extends shelf life. New Phytologist, 2013, 200, 650-655.	7.3	78