Susan Gottesman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6124333/susan-gottesman-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

96 12,792 50 92 g-index h-index citations papers 96 14,500 11 7.04 L-index ext. citations ext. papers avg, IF

#	Paper	IF	Citations
92	Multiple in vivo roles for the C-terminal domain of the RNA chaperone Hfq <i>Nucleic Acids Research</i> , 2022 ,	20.1	2
91	A fluorescence-based genetic screen reveals diverse mechanisms silencing small RNA signaling in. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	2
90	Trans-Acting Small RNAs and Their Effects on Gene Expression in and. <i>EcoSal Plus</i> , 2020 , 9,	7.7	62
89	Phage Resistance in Multidrug-Resistant Klebsiella pneumoniae ST258 Evolves via Diverse Mutations That Culminate in Impaired Adsorption. <i>MBio</i> , 2020 , 11,	7.8	36
88	How Does the Alarmone ppGpp Change Bacterial Cell Metabolism? From Genome-wide Approaches to Structure to Physiology. <i>Molecular Cell</i> , 2020 , 80, 1-2	17.6	4
87	IgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein. <i>PLoS Genetics</i> , 2020 , 16, e1008610	6	10
86	IgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein 2020 , 16, e1008610		
85	IgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein 2020 , 16, e1008610		
84	IgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein 2020 , 16, e1008610		
83	IgaA negatively regulates the Rcs Phosphorelay via contact with the RcsD Phosphotransfer Protein 2020 , 16, e1008610		
82	Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. <i>Journal of Biological Chemistry</i> , 2019 , 294, 11685-11700	5.4	74
81	Regulation of Transcription Termination of Small RNAs and by Small RNAs: Molecular Mechanisms and Biological Functions. <i>Frontiers in Cellular and Infection Microbiology</i> , 2019 , 9, 201	5.9	35
80	Structural basis for inhibition of a response regulator of Btability by a ClpXP antiadaptor. <i>Genes and Development</i> , 2019 , 33, 718-732	12.6	12
79	A 5SUTR-Derived sRNA Regulates RhlR-Dependent Quorum Sensing in Pseudomonas aeruginosa. <i>MBio</i> , 2019 , 10,	7.8	20
78	Regulation of acetate metabolism and coordination with the TCA cycle via a processed small RNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 1043-1052	11.5	34
77	Chilled in Translation: Adapting to Bacterial Climate Change. <i>Molecular Cell</i> , 2018 , 70, 193-194	17.6	12
76	Small Regulatory RNAs in the Enterobacterial Response to Envelope Damage and Oxidative Stress. <i>Microbiology Spectrum</i> , 2018 , 6,	8.9	28

75	The Complex Rcs Regulatory Cascade. Annual Review of Microbiology, 2018, 72, 111-139	17.5	94
74	New aspects of RNA-based regulation by Hfq and its partner sRNAs. <i>Current Opinion in Microbiology</i> , 2018 , 42, 53-61	7.9	113
73	Small Regulatory RNAs in the Enterobacterial Response to Envelope Damage and Oxidative Stress 2018 , 211-228		0
72	Experimental Evolution of Escherichia coli K-12 at High pH and with RpoS Induction. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	9
71	Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction. <i>Molecular Microbiology</i> , 2017 , 105, 309-325	4.1	43
70	In vivo characterization of an Hfq protein encoded by the Bacillus anthracis virulence plasmid pXO1. <i>BMC Microbiology</i> , 2017 , 17, 63	4.5	8
69	Hfq links translation repression to stress-induced mutagenesis in. <i>Genes and Development</i> , 2017 , 31, 13	8 2 ≥169	95 58
68	Stress Reduction, Bacterial Style. <i>Journal of Bacteriology</i> , 2017 , 199,	3.5	9
67	Spot 42 sRNA regulates arabinose-inducible araBAD promoter activity by repressing synthesis of the high-affinity low-capacity arabinose transporter. <i>Journal of Bacteriology</i> , 2017 , 199, e00691-16	3.5	6
66	sRNA-Mediated Control of Transcription Termination in E.Œoli. <i>Cell</i> , 2016 , 167, 111-121.e13	56.2	123
65	Cell biology: Phosphate on, rubbish out. <i>Nature</i> , 2016 , 539, 38-39	50.4	5
64	sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs. <i>Nucleic Acids Research</i> , 2016 , 44, 6907-23	20.1	40
63	Small RNA Regulation of TolC, the Outer Membrane Component of Bacterial Multidrug Transporters. <i>Journal of Bacteriology</i> , 2016 , 198, 1101-13	3.5	39
62	Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system. <i>Nucleic Acids Research</i> , 2016 , 44, 9650-9666	20.1	20
61	C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E6089-E609	6 ^{11.5}	67
60	Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing. <i>Journal of Molecular Biology</i> , 2015 , 427, 3491-3500	6.5	23
59	Stress sigma factor RpoS degradation and translation are sensitive to the state of central metabolism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 5159-64	11.5	49
58	Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. <i>EMBO Journal</i> , 2015 , 34, 2557-73	13	115

57	Hfqs in Bacillus anthracis: Role of protein sequence variation in the structure and function of proteins in the Hfq family. <i>Protein Science</i> , 2015 , 24, 1808-19	6.3	13
56	RNA reflections: converging on Hfq. <i>Rna</i> , 2015 , 21, 511-2	5.8	28
55	RNA. Riboswitch regulates RNA. <i>Science</i> , 2014 , 345, 876-7	33.3	14
54	The MiaA tRNA modification enzyme is necessary for robust RpoS expression in Escherichia coli. <i>Journal of Bacteriology</i> , 2014 , 196, 754-61	3.5	20
53	Roles of adaptor proteins in regulation of bacterial proteolysis. <i>Current Opinion in Microbiology</i> , 2013 , 16, 140-7	7.9	67
52	Bacterial small RNA-based negative regulation: Hfq and its accomplices. <i>Journal of Biological Chemistry</i> , 2013 , 288, 7996-8003	5.4	195
51	Mutations in interaction surfaces differentially impact E. coli Hfq association with small RNAs and their mRNA targets. <i>Journal of Molecular Biology</i> , 2013 , 425, 3678-97	6.5	100
50	Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. <i>Molecular Microbiology</i> , 2013 , 89, 52-64	4.1	37
49	Anti-adaptors provide multiple modes for regulation of the RssB adaptor protein. <i>Genes and Development</i> , 2013 , 27, 2722-35	12.6	41
48	A complex network of small non-coding RNAs regulate motility in Escherichia coli. <i>Molecular Microbiology</i> , 2012 , 86, 524-38	4.1	122
47	The RpoS-mediated general stress response in Escherichia coli. <i>Annual Review of Microbiology</i> , 2011 , 65, 189-213	17.5	596
46	Competition among Hfq-binding small RNAs in Escherichia coli. <i>Molecular Microbiology</i> , 2011 , 82, 1545-	62.1	127
45	Role of polynucleotide phosphorylase in sRNA function in Escherichia coli. <i>Rna</i> , 2011 , 17, 1172-89	5.8	84
44	Bacterial small RNA regulators: versatile roles and rapidly evolving variations. <i>Cold Spring Harbor Perspectives in Biology</i> , 2011 , 3,	10.2	530
43	MicA sRNA links the PhoP regulon to cell envelope stress. <i>Molecular Microbiology</i> , 2010 , 76, 467-79	4.1	82
42	Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. <i>EMBO Journal</i> , 2010 , 29, 3094-107	13	210
41	Positive regulation by small RNAs and the role of Hfq. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 9602-7	11.5	216
40	Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. <i>Journal of Bacteriology</i> , 2010 , 192, 5559-71	3.5	100

(2005-2009)

39	The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. <i>Journal of Bacteriology</i> , 2009 , 191, 461-76	3.5	146
38	A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. <i>Molecular Microbiology</i> , 2009 , 72, 551-65	4.1	99
37	A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. <i>Molecular Microbiology</i> , 2009 , 74, 1314-30	4.1	121
36	A reversed approach for finding small RNAs regulating genes of interest. <i>FASEB Journal</i> , 2009 , 23, 846.3	0.9	
35	Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. <i>Molecular Microbiology</i> , 2008 , 68, 298-313	4.1	122
34	The 5Send of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. <i>Nucleic Acids Research</i> , 2008 , 36, 6781-94	20.1	123
33	ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 12896-901	11.5	102
32	Translational regulation of the Escherichia coli stress factor RpoS: a role for SsrA and Lon. <i>Journal of Bacteriology</i> , 2007 , 189, 4872-9	3.5	37
31	SigmaE regulates and is regulated by a small RNA in Escherichia coli. <i>Journal of Bacteriology</i> , 2007 , 189, 4243-56	3.5	113
30	Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. <i>Genes and Development</i> , 2006 , 20, 884-97	12.6	124
29	The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 135	₫₫: §	104
28	Modulating the outer membrane with small RNAs. Genes and Development, 2006, 20, 2338-48	12.6	165
27	Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. <i>Molecular Microbiology</i> , 2006 , 59, 231-47	4.1	203
26	The Rcs phosphorelay: a complex signal transduction system. <i>Annual Review of Microbiology</i> , 2005 , 59, 379-405	17.5	423
25	Micros for microbes: non-coding regulatory RNAs in bacteria. <i>Trends in Genetics</i> , 2005 , 21, 399-404	8.5	388
24	Analysis of the Escherichia coli Alp phenotype: heat shock induction in ssrA mutants. <i>Journal of Bacteriology</i> , 2005 , 187, 4739-51	3.5	29
23	Effect of RyhB small RNA on global iron use in Escherichia coli. <i>Journal of Bacteriology</i> , 2005 , 187, 6962-7	731 5	421
22	Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. <i>Journal of Bacteriology</i> , 2005 , 187, 6770-8	3.5	113

21	The small RNA regulators of Escherichia coli: roles and mechanisms*. <i>Annual Review of Microbiology</i> , 2004 , 58, 303-28	17.5	478
20	Small RNAs shed some light. <i>Cell</i> , 2004 , 118, 1-2	56.2	21
19	Proteolysis in bacterial regulatory circuits. <i>Annual Review of Cell and Developmental Biology</i> , 2003 , 19, 565-87	12.6	341
18	Global analysis of small RNA and mRNA targets of Hfq. <i>Molecular Microbiology</i> , 2003 , 50, 1111-24	4.1	449
17	Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. <i>Genes and Development</i> , 2003 , 17, 2374-83	12.6	572
16	Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. <i>Molecular Microbiology</i> , 2002 , 46, 813-26	4.1	281
15	A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 4620-5	11.5	894
14	Stealth regulation: biological circuits with small RNA switches. <i>Genes and Development</i> , 2002 , 16, 2829-	47 2.6	92
13	Regulation of RpoS by a novel small RNA: the characterization of RprA. <i>Molecular Microbiology</i> , 2001 , 39, 1382-94	4.1	233
12	The RssB response regulator directly targets sigma(S) for degradation by ClpXP. <i>Genes and Development</i> , 2001 , 15, 627-37	12.6	230
11	Identification of novel small RNAs using comparative genomics and microarrays. <i>Genes and Development</i> , 2001 , 15, 1637-51	12.6	548
10	Cell biology. Surviving starvation. <i>Science</i> , 2001 , 293, 614-5	33.3	20
9	Regulation of RpoS by a novel small RNA: the characterization of RprA 2001 , 39, 1382		3
8	Posttranslational quality control: folding, refolding, and degrading proteins. <i>Science</i> , 1999 , 286, 1888-9	333.3	930
7	Regulation of proteolysis of the stationary-phase sigma factor RpoS. <i>Journal of Bacteriology</i> , 1998 , 180, 1154-8	3.5	153
6	Proteases and their targets in Escherichia coli. <i>Annual Review of Genetics</i> , 1996 , 30, 465-506	14.5	611
5	Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. <i>FEBS Letters</i> , 1996 , 398, 274-8	3.8	95
4	Bacterial regulation: global regulatory networks. <i>Annual Review of Genetics</i> , 1984 , 18, 415-41	14.5	221

LIST OF PUBLICATIONS

3	Roles of filking Stability, Translational Regulation, and Small Rivas in Stress Response Regulation59-75	4
2	Regulation of Capsule Synthesis: Modification of the Two-Component Paradigm by an Accessory Unstable Regulator253-262	45
1	Negative regulation of the Ros phosphorelay via IgaA contact with the RosD phosphotransfer protein	1