List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6123733/publications.pdf Version: 2024-02-01

MINNA HAKKADAINEN

#	Article	IF	CITATIONS
1	Microwave-assisted methacrylation of chitosan for 3D printable hydrogels in tissue engineering. Materials Advances, 2022, 3, 514-525.	5.4	18
2	Degradation of Cellulose Acetate in Simulated Aqueous Environments: One‥ear Study. Macromolecular Materials and Engineering, 2022, 307, .	3.6	16
3	Designed from Biobased Materials for Recycling: Imineâ€Based Covalent Adaptable Networks. Macromolecular Rapid Communications, 2022, 43, e2100816.	3.9	55
4	Frontalâ€Photopolymerization of Fully Biobased Epoxy Composites. Macromolecular Materials and Engineering, 2022, 307, .	3.6	14
5	Structurally Diverse and Recyclable Isocyanate-Free Polyurethane Networks from CO ₂ -Derived Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2022, 10, 2522-2531.	6.7	19
6	Conformational Selection in Biocatalytic Plastic Degradation by PETase. ACS Catalysis, 2022, 12, 3397-3409.	11.2	42
7	DLP-printable fully biobased soybean oil composites. Polymer, 2022, 247, 124779.	3.8	17
8	DOX mediated synthesis of PLA-co-PS graft copolymers with matrix-driven self-assembly in PLA-based blends. European Polymer Journal, 2022, 170, 111157.	5.4	3
9	Tailoring Oligomeric Plasticizers for Polylactide through Structural Control. ACS Omega, 2022, 7, 14305-14316.	3.5	13
10	Turning food waste to antibacterial and biocompatible fungal chitin/chitosan monofilaments. International Journal of Biological Macromolecules, 2022, 209, 618-630.	7.5	9
11	Sustainable polymers. Nature Reviews Methods Primers, 2022, 2, .	21.2	78
12	Degradation of Cellulose Derivatives in Laboratory, Man-Made, and Natural Environments. Biomacromolecules, 2022, 23, 2713-2729.	5.4	42
13	Degradable or not? Cellulose acetate as a model for complicated interplay between structure, environment and degradation. Chemosphere, 2021, 265, 128731.	8.2	87
14	Solubility-governed architectural design of polyhydroxyurethane- <i>graft</i> -poly(ε-caprolactone) copolymers. Polymer Chemistry, 2021, 12, 196-208.	3.9	12
15	Nanostructured Phase Morphology of a Biobased Copolymer for Tough and UV-Resistant Polylactide. ACS Applied Polymer Materials, 2021, 3, 1973-1982.	4.4	27
16	Photocurable "all-lignocellulose―derived hydrogel nanocomposites for adsorption of cationic contaminants. Sustainable Materials and Technologies, 2021, 27, e00243.	3.3	8
17	Carbon Dot-Triggered Photocatalytic Degradation of Cellulose Acetate. Biomacromolecules, 2021, 22, 2211-2223.	5.4	21
18	Microwave Assisted Selective Hydrolysis of Polyamides from Multicomponent Carpet Waste. Global Challenges, 2021, 5, 2000119.	3.6	8

#	Article	IF	CITATIONS
19	Ultrafast microwave assisted recycling of PET to a family of functional precursors and materials. European Polymer Journal, 2021, 151, 110441.	5.4	26
20	Microwave Hydrophobized Lignin with Antioxidant Activity for Fused Filament Fabrication. ACS Applied Polymer Materials, 2021, 3, 3538-3548.	4.4	20
21	New Solvent and Coagulating Agent for Development of Chitosan Fibers by Wet Spinning. Polymers, 2021, 13, 2121.	4.5	13
22	Fungal textiles: Wet spinning of fungal microfibers to produce monofilament yarns. Sustainable Materials and Technologies, 2021, 28, e00256.	3.3	6
23	Osteoconductive and Antibacterial Poly(lactic acid) Fibrous Membranes Impregnated with Biobased Nanocarbons for Biodegradable Bone Regenerative Scaffolds. Industrial & Engineering Chemistry Research, 2021, 60, 12021-12031.	3.7	29
24	Rupture and chemical accumulation in contact lenses with dexamethasone eye drop administration after congenital cataract surgery. Acta Ophthalmologica, 2021, , .	1.1	0
25	In Vivo Versus In Vitro Degradation of a 3D Printed Resorbable Device for Ligation of Vascular Tissue in Horses. Macromolecular Bioscience, 2021, 21, 2100164.	4.1	2
26	Tunable polylactide plasticizer design: Rigid stereoisomers. European Polymer Journal, 2021, 157, 110649.	5.4	14
27	Carbon dot/polymer nanocomposites: From green synthesis to energy, environmental and biomedical applications. Sustainable Materials and Technologies, 2021, 29, e00304.	3.3	51
28	UV-Cured Biodegradable Methacrylated Starch-Based Coatings. Coatings, 2021, 11, 127.	2.6	4
29	Long-chain polyamide covalent adaptable networks based on renewable ethylene brassylate and disulfide exchange. Polymer Chemistry, 2021, 12, 5668-5678.	3.9	10
30	Cationic UV-Curing of Epoxidized Biobased Resins. Polymers, 2021, 13, 89.	4.5	69
31	From polysaccharides to UV-curable biorenewable organo/hydrogels for methylene blue removal. Polymer, 2021, 235, 124257.	3.8	9
32	Plastics and Sustainability. , 2021, , 489-504.		1
33	Chromatographic Analysis of Polymers. , 2021, , 171-204.		0
34	Nitrogen and phosphorous doped graphene quantum dots: Excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites. Journal of Hazardous Materials, 2020, 381, 121013.	12.4	75
35	Cellulose-Derived Nanographene Oxide Reinforced Macroporous Scaffolds of High Internal Phase Emulsion-Templated Cross-Linked Poly(ε-caprolactone). Biomacromolecules, 2020, 21, 589-596.	5.4	26
36	Oxidized Carbonized Cellulose-Coated Filters for Environmental Contaminant Adsorption and Detection. Industrial & Engineering Chemistry Research, 2020, 59, 13578-13587.	3.7	4

#	Article	IF	CITATIONS
37	Photocurable, Thermally Reprocessable, and Chemically Recyclable Vanillin-Based Imine Thermosets. ACS Sustainable Chemistry and Engineering, 2020, 8, 17272-17279.	6.7	79
38	DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels. Polymers, 2020, 12, 1655.	4.5	64
39	Methacrylated lignosulfonate as compatibilizer for flax fiber reinforced biocomposites with soybean-derived polyester matrix. Composites Communications, 2020, 22, 100536.	6.3	10
40	Celluloseâ€Based Reduced Nanographene Oxide on Gold Nanoparticle Supports for CO 2 Electrocatalysis. ChemElectroChem, 2020, 7, 4889-4899.	3.4	3
41	Dual-Functioning Antibacterial Eugenol-Derived Plasticizers for Polylactide. Biomolecules, 2020, 10, 1077.	4.0	12
42	Hydrolytic Degradation of Porous Crosslinked Poly(ε-Caprolactone) Synthesized by High Internal Phase Emulsion Templating. Polymers, 2020, 12, 1849.	4.5	20
43	Microwave processing of lignin in green solvents: A high-yield process to narrow-dispersity oligomers. Industrial Crops and Products, 2020, 145, 112152.	5.2	23
44	Light Processable Starch Hydrogels. Polymers, 2020, 12, 1359.	4.5	42
45	Intriguing Carbon Flake Formation during Microwaveâ€Assisted Hydrothermal Carbonization of Sodium Lignosulfonate. Global Challenges, 2020, 4, 1900111.	3.6	6
46	Thermoplastic "All-Cellulose―Composites with Covalently Attached Carbonized Cellulose. Biomacromolecules, 2020, 21, 1752-1761.	5.4	21
47	Photocurable chitosan as bioink for cellularized therapies towards personalized scaffold architecture. Bioprinting, 2020, 18, e00082.	5.8	53
48	Cellulose-derived hydrothermally carbonized materials and their emerging applications. Current Opinion in Green and Sustainable Chemistry, 2020, 23, 18-24.	5.9	28
49	Recyclable and Flexible Polyester Thermosets Derived from Microwave-Processed Lignin. ACS Applied Polymer Materials, 2020, 2, 1917-1924.	4.4	16
50	Turning natural δ-lactones to thermodynamically stable polymers with triggered recyclability. Polymer Chemistry, 2020, 11, 4883-4894.	3.9	22
51	Carbonized lignosulfonate-based porous nanocomposites for adsorption of environmental contaminants. Functional Composite Materials, 2020, 1, .	1.4	8
52	Biobased Polyamide Thermosets: From a Facile One-Step Synthesis to Strong and Flexible Materials. Macromolecules, 2019, 52, 6181-6191.	4.8	8
53	One-Pot Synthesis of Lignin Thermosets Exhibiting Widely Tunable Mechanical Properties and Shape Memory Behavior. ACS Sustainable Chemistry and Engineering, 2019, 7, 13456-13463.	6.7	42
54	Polyacrylonitrile/N,P co-doped graphene quantum dots-layered double hydroxide nanocomposite: Flame retardant property, thermal stability and fire hazard. European Polymer Journal, 2019, 120, 109256.	5.4	23

#	Article	IF	CITATIONS
55	Superior flame retardancy of cotton by synergetic effect of cellulose-derived nano-graphene oxide carbon dots and disulphide-containing polyamidoamines. Polymer Degradation and Stability, 2019, 169, 108993.	5.8	27
56	Photocrosslinked Chitosan Hydrogels Reinforced with Chitosanâ€Derived Nanoâ€Graphene Oxide. Macromolecular Chemistry and Physics, 2019, 220, 1900174.	2.2	29
57	Polymers, Giant Molecules with Properties: An Entertaining Activity Introducing Polymers to Young Students. Journal of Chemical Education, 2019, 96, 1691-1695.	2.3	7
58	Designed from Recycled: Turning Polyethylene Waste to Covalently Attached Polylactide Plasticizers. ACS Sustainable Chemistry and Engineering, 2019, 7, 11004-11013.	6.7	61
59	Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte. Nanoscale, 2019, 11, 10172-10177.	5.6	49
60	Novel sample-substrates for the determination of new psychoactive substances in oral fluid by desorption electrospray ionization-high resolution mass spectrometry. Talanta, 2019, 202, 136-144.	5.5	35
61	Recyclable Fully Biobased Chitosan Adsorbents Spray-Dried in One Pot to Microscopic Size and Enhanced Adsorption Capacity. Biomacromolecules, 2019, 20, 1956-1964.	5.4	28
62	Importance of Surface Functionalities for Antibacterial Properties of Carbon Spheres. Advanced Sustainable Systems, 2019, 3, 1800148.	5.3	12
63	Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: An in situ approach. Composites Science and Technology, 2019, 171, 94-102.	7.8	64
64	Cellulose-Derived Nanographene Oxide Surface-Functionalized Three-Dimensional Scaffolds with Drug Delivery Capability. Biomacromolecules, 2019, 20, 738-749.	5.4	26
65	Microwave carbonized cellulose for trace pharmaceutical adsorption. Chemical Engineering Journal, 2018, 346, 557-566.	12.7	89
66	Construction of Bioactive and Reinforced Bioresorbable Nanocomposites by Reduced Nano-Graphene Oxide Carbon Dots. Biomacromolecules, 2018, 19, 1074-1081.	5.4	44
67	In vitro and in vivo effects of ophthalmic solutions on silicone hydrogel bandage lens material Senofilcon A. Australasian journal of optometry, The, 2018, 101, 354-362.	1.3	2
68	Green Strategy to Reduced Nanographene Oxide through Microwave Assisted Transformation of Cellulose. ACS Sustainable Chemistry and Engineering, 2018, 6, 1246-1255.	6.7	31
69	One-Pot Synthesis of Sustainable High-Performance Thermoset by Exploiting Eugenol Functionalized 1,3-Dioxolan-4-one. ACS Sustainable Chemistry and Engineering, 2018, 6, 15201-15211.	6.7	31
70	Tunable chitosan hydrogels for adsorption: Property control by biobased modifiers. Carbohydrate Polymers, 2018, 196, 135-145.	10.2	37
71	Nano-Graphene Oxide Functionalized Bioactive Poly(lactic acid) and Poly(ε-caprolactone) Nanofibrous Scaffolds. Materials, 2018, 11, 566.	2.9	32
72	Microwave Assisted Hydrothermal Carbonization and Solid State Postmodification of Carbonized Polypropylene. ACS Sustainable Chemistry and Engineering, 2018, 6, 11105-11114.	6.7	37

#	Article	IF	CITATIONS
73	Isosorbide as Core Component for Tailoring Biobased Unsaturated Polyester Thermosets for a Wide Structure–Property Window. Biomacromolecules, 2018, 19, 3077-3085.	5.4	33
74	Graphene-Polymer Nanocomposites for Biomedical Applications. , 2018, , 51-66.		0
75	Starch Derived Nanosized Graphene Oxide Functionalized Bioactive Porous Starch Scaffolds. Macromolecular Bioscience, 2017, 17, 1600397.	4.1	35
76	Coffee-Ground-Derived Quantum Dots for Aqueous Processable Nanoporous Graphene Membranes. ACS Sustainable Chemistry and Engineering, 2017, 5, 5360-5367.	6.7	63
77	Stability of O/W emulsions packed with PLA film with incorporated rosemary and thyme. European Food Research and Technology, 2017, 243, 1249-1259.	3.3	9
78	Starch-Derived Nanographene Oxide Paves the Way for Electrospinnable and Bioactive Starch Scaffolds for Bone Tissue Engineering. Biomacromolecules, 2017, 18, 1582-1591.	5.4	68
79	Heat-Resistant and Microwaveable Poly(lactic acid) by Quantum-Dot-Promoted Stereocomplexation. ACS Sustainable Chemistry and Engineering, 2017, 5, 11607-11617.	6.7	23
80	Biobased Nanographene Oxide Creates Stronger Chitosan Hydrogels with Improved Adsorption Capacity for Trace Pharmaceuticals. ACS Sustainable Chemistry and Engineering, 2017, 5, 11525-11535.	6.7	51
81	The viscoelastic interaction between dispersed and continuous phase of PCL/HA-PVA oil-in-water emulsion uncovers the theoretical and experimental basis for fiber formation during emulsion electrospinning. European Polymer Journal, 2017, 96, 44-54.	5.4	22
82	Coffee Grounds to Multifunctional Quantum Dots: Extreme Nanoenhancers of Polymer Biocomposites. ACS Applied Materials & Interfaces, 2017, 9, 27972-27983.	8.0	41
83	Trash to Treasure: Microwave-Assisted Conversion of Polyethylene to Functional Chemicals. Industrial & Engineering Chemistry Research, 2017, 56, 14814-14821.	3.7	101
84	Designed to degrade. Science, 2017, 358, 872-873.	12.6	235
85	Polyhydroxyalkanoate-based drug delivery systems. Polymer International, 2017, 66, 617-622.	3.1	31
86	Superiorly Plasticized PVC/PBSA Blends through Crotonic and Acrylic Acid Functionalization of PVC. Polymers, 2017, 9, 84.	4.5	27
87	Poly(lactide)-g-poly(butylene succinate-co-adipate) with High Crystallization Capacity and Migration Resistance. Materials, 2016, 9, 313.	2.9	27
88	Structural Hierarchy and Polymorphic Transformation in Shearâ€Induced Shishâ€Kebab of Stereocomplex Poly(Lactic Acid). Macromolecular Rapid Communications, 2016, 37, 745-751.	3.9	31
89	Immobilized Graphene Oxide Nanosheets as Thin but Strong Nanointerfaces in Biocomposites. ACS Sustainable Chemistry and Engineering, 2016, 4, 2211-2222.	6.7	48
90	Zero-Dimensional and Highly Oxygenated Graphene Oxide for Multifunctional Poly(lactic acid) Bionanocomposites. ACS Sustainable Chemistry and Engineering, 2016, 4, 5618-5631.	6.7	50

#	Article	IF	CITATIONS
91	Stereocontrolled Entanglementâ€Directed Selfâ€Alignment of Poly(lactic acid) Cylindrites. Macromolecular Chemistry and Physics, 2016, 217, 2567-2575.	2.2	10
92	Characterization of degradation fragments released by arc-induced ablation of polymers in air. Journal Physics D: Applied Physics, 2016, 49, 055502.	2.8	4
93	From starch to polylactide and nano-graphene oxide: fully starch derived high performance composites. RSC Advances, 2016, 6, 54336-54345.	3.6	38
94	Supramolecular Assembly of Biobased Graphene Oxide Quantum Dots Controls the Morphology of and Induces Mineralization on Poly(ε-caprolactone) Films. Biomacromolecules, 2016, 17, 256-261.	5.4	28
95	Conformational Footprint in Hydrolysis-Induced Nanofibrillation and Crystallization of Poly(lactic) Tj ETQq1 1 0.78	84314 rgB⊺ 5.4	T 49verlock
96	Recycling Oxidized Model Polyethylene Powder as a Degradation Enhancing Filler for Polyethylene/Polycaprolactone Blends. ACS Sustainable Chemistry and Engineering, 2016, 4, 129-135.	6.7	21
97	Graphene Oxide-Driven Design of Strong and Flexible Biopolymer Barrier Films: From Smart Crystallization Control to Affordable Engineering. ACS Sustainable Chemistry and Engineering, 2016, 4, 334-349.	6.7	47
98	Effect of Oligo-Hydroxyalkanoates on Poly(3-Hydroxybutyrate- <i>co</i> -4-Hydroxybutyrate)-Based Systems. Macromolecular Materials and Engineering, 2015, 300, 661-666.	3.6	10
99	Migration resistant glucose esters as bioplasticizers for polylactide. Journal of Applied Polymer Science, 2015, 132, .	2.6	15
100	Recycling PLA to multifunctional oligomeric compatibilizers for PLA/starch composites. European Polymer Journal, 2015, 64, 126-137.	5.4	45
101	Valorization of cellulose and waste paper to graphene oxide quantum dots. RSC Advances, 2015, 5, 26550-26558.	3.6	68
102	Controlling the cooperative self-assembly of graphene oxide quantum dots in aqueous solutions. RSC Advances, 2015, 5, 57425-57432.	3.6	32
103	Beyond a Model of Polymer Processing-Triggered Shear: Reconciling Shish-Kebab Formation and Control of Chain Degradation in Sheared Poly(<scp>l</scp> -lactic acid). ACS Sustainable Chemistry and Engineering, 2015, 3, 1443-1452.	6.7	35
104	Degradation product profiles of melt spun in situ cross-linked poly(Îμ-caprolactone) fibers. Materials Chemistry and Physics, 2015, 156, 82-88.	4.0	11
105	Two Step Extrusion Process: From Thermal Recycling of PHB to Plasticized PLA by Reactive Extrusion Grafting of PHB Degradation Products onto PLA Chains. Macromolecules, 2015, 48, 2509-2518.	4.8	75
106	Thermostable and Impermeable "Nano-Barrier Walls―Constructed by Poly(lactic acid) Stereocomplex Crystal Decorated Graphene Oxide Nanosheets. Macromolecules, 2015, 48, 2127-2137.	4.8	95
107	Microbiological investigations of oxygen plasma treated parylene C surfaces for metal implant coating. Materials Science and Engineering C, 2015, 52, 273-281.	7.3	30
108	A proof-of-concept for folate-conjugated and quercetin-anchored pluronic mixed micelles as molecularly modulated polymeric carriers for doxorubicin. Polymer, 2015, 74, 193-204.	3.8	25

#	Article	IF	CITATIONS
109	Microwave-Assisted Recycling of Waste Paper to Green Platform Chemicals and Carbon Nanospheres. ACS Sustainable Chemistry and Engineering, 2015, 3, 177-185.	6.7	53
110	Release of quercetin from micellar nanoparticles with saturated and unsaturated core forming polyesters — A combined computational and experimental study. Materials Science and Engineering C, 2015, 46, 417-426.	7.3	4
111	Green Plasticizers from Liquefied Wood. Waste and Biomass Valorization, 2014, 5, 651-659.	3.4	18
112	Polylactide stereocomplexation leads to reduced migration during microwave heating in contact with food simulants. Journal of Food Engineering, 2014, 134, 1-4.	5.2	3
113	Exploring the Biodegradation Potential of Polyethylene Through a Simple Chemical Test Method. Journal of Polymers and the Environment, 2014, 22, 69-77.	5.0	17
114	LDI-MS examination of oxygen plasma modified polymer for designing tailored implant biointerfaces. RSC Advances, 2014, 4, 26240-26243.	3.6	11
115	A Closed-Loop Process from Microwave-Assisted Hydrothermal Degradation of Starch to Utilization of the Obtained Degradation Products as Starch Plasticizers. ACS Sustainable Chemistry and Engineering, 2014, 2, 2172-2181.	6.7	46
116	Synthesis, characterization, and cellular uptake of magnetic nanocarriers for cancer drug delivery. Journal of Colloid and Interface Science, 2014, 433, 76-85.	9.4	31
117	Structural Basis for Unique Hierarchical Cylindrites Induced by Ultrahigh Shear Gradient in Single Natural Fiber Reinforced Poly(lactic acid) Green Composites. Biomacromolecules, 2014, 15, 1676-1686.	5.4	57
118	Microwave-Assisted Reaction in Green Solvents Recycles PHB to Functional Chemicals. ACS Sustainable Chemistry and Engineering, 2014, 2, 2198-2203.	6.7	46
119	Glucose esters as biobased PVC plasticizers. European Polymer Journal, 2014, 58, 34-40.	5.4	33
120	Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals. Carbohydrate Polymers, 2014, 112, 448-457.	10.2	45
121	Stereocomplexation between PLA-like substituted oligomers and the influence on the hydrolytic degradation. Polymer, 2013, 54, 4105-4111.	3.8	36
122	Combined Chromatographic and Mass Spectrometric Toolbox for Fingerprinting Migration from PET Tray during Microwave Heating. Journal of Agricultural and Food Chemistry, 2013, 61, 1405-1415.	5.2	18
123	Flexible and strong ternary blends of poly(vinyl chloride), poly(butylene adipate) and nanoparticle-plasticizers. Materials Chemistry and Physics, 2013, 139, 734-740.	4.0	6
124	Improved dispersion of grafted starch granules leads to lower water resistance for starch-g-PLA/PLA composites. Composites Science and Technology, 2013, 86, 149-156.	7.8	35
125	Degradation profile and preliminary clinical testing of a resorbable device for ligation of blood vessels. Acta Biomaterialia, 2013, 9, 6898-6904.	8.3	17
126	Liquefied biomass derived plasticizer for polylactide. Journal of Chemical Technology and Biotechnology, 2013, 88, 897-903.	3.2	16

#	Article	IF	CITATIONS
127	Migration from polycarbonate packaging to food simulants during microwave heating. Polymer Degradation and Stability, 2012, 97, 1387-1395.	5.8	33
128	Nanoclay effects on the degradation process and product patterns of polylactide. Polymer Degradation and Stability, 2012, 97, 1254-1260.	5.8	42
129	Electrospray Ionizationâ€Mass Spectrometry Analysis Reveals Migration of Cyclic Lactide Oligomers from Polylactide Packaging in Contact with Ethanolic Food Simulant. Packaging Technology and Science, 2012, 25, 427-433.	2.8	24
130	Customizing the Hydrolytic Degradation Rate of Stereocomplex PLA through Different PDLA Architectures. Biomacromolecules, 2012, 13, 1212-1222.	5.4	98
131	Surface Assisted Laser Desorption Ionization-Mass Spectrometry (SALDI-MS) for Analysis of Polyester Degradation Products. Journal of the American Society for Mass Spectrometry, 2012, 23, 1071-1076.	2.8	15
132	Pyrolysis-GC–MS reveals important differences in hydrolytic degradation process of wood flour and rice bran filled polylactide composites. Polymer Degradation and Stability, 2012, 97, 281-287.	5.8	13
133	Long-term properties and migration of low molecular mass compounds from modified PLLA materials during accelerated ageing. Polymer Degradation and Stability, 2012, 97, 914-920.	5.8	21
134	Tuning the Mechanical Properties of Tapioca Starch by Plasticizers, Inorganic Fillers and Agrowaste-Based Fillers. ISRN Polymer Science, 2012, 2012, 1-7.	0.3	2
135	Degradable Polyethylene: Fantasy or Reality. Environmental Science & Technology, 2011, 45, 4217-4227.	10.0	184
136	Emerging Mass Spectrometric Tools for Analysis of Polymers and Polymer Additives. Advances in Polymer Science, 2011, , 1-37.	0.8	7
137	Core–shell nanoparticle–plasticizers for design of high-performance polymeric materials with improved stiffness and toughness. Journal of Materials Chemistry, 2011, 21, 8670.	6.7	28
138	Microwave Heating Causes Rapid Degradation of Antioxidants in Polypropylene Packaging, Leading to Greatly Increased Specific Migration to Food Simulants As Shown by ESI-MS and GC-MS. Journal of Agricultural and Food Chemistry, 2011, 59, 5418-5427.	5.2	93
139	Porosity and Pore Size Regulate the Degradation Product Profile of Polylactide. Biomacromolecules, 2011, 12, 1250-1258.	5.4	113
140	Electrospray Ionization–Mass Spectrometry for Molecular Level Understanding of Polymer Degradation. Advances in Polymer Science, 2011, , 175-204.	0.8	1
141	Nanocomposites as novel surfaces for laser desorption ionizationmass spectrometry. Analytical Methods, 2011, 3, 192-197.	2.7	13
142	From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors. Biomacromolecules, 2011, 12, 523-532.	5.4	573
143	In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomaterialia, 2011, 7, 2035-2046.	8.3	62
144	Oligomeric isosorbide esters as alternative renewable resource plasticizers for PVC. Journal of Applied Polymer Science, 2011, 119, 2400-2407.	2.6	104

#	Article	IF	CITATIONS
145	Method development for the analysis of biodegradable polymers. International Journal of Metrology and Quality Engineering, 2010, 1, 29-32.	1.0	4
146	Multiple headspace single-drop micro-extraction for quantitative determination of lactide in thermally-oxidized polylactide. Polymer Degradation and Stability, 2010, 95, 270-273.	5.8	8
147	Type of polypropylene material significantly influences the migration of antioxidants from polymer packaging to food simulants during microwave heating. Journal of Applied Polymer Science, 2010, 118, 1084-1093.	2.6	41
148	Polylactide Stereocomplexation Leads to Higher Hydrolytic Stability but More Acidic Hydrolysis Product Pattern. Biomacromolecules, 2010, 11, 1067-1073.	5.4	151
149	Surface Modification Changes the Degradation Process and Degradation Product Pattern of Polylactide. Langmuir, 2010, 26, 378-383.	3.5	76
150	Tuning the Polylactide Hydrolysis Rate by Plasticizer Architecture and Hydrophilicity without Introducing New Migrants. Biomacromolecules, 2010, 11, 3617-3623.	5.4	62
151	Migration and Hydrolysis of Hydrophobic Polylactide Plasticizer. Biomacromolecules, 2010, 11, 277-283.	5.4	102
152	MALDI-TOF MS Reveals the Molecular Level Structures of Different Hydrophilicâ^'Hydrophobic Polyether-esters. Biomacromolecules, 2009, 10, 1540-1546.	5.4	21
153	Fingerprinting the degradation product patterns of different polyesterâ€ether networks by electrospray ionization mass spectrometry. Journal of Polymer Science Part A, 2008, 46, 4617-4629.	2.3	33
154	Migration of Monomeric and Polymeric PVC Plasticizers. , 2008, , 159-185.		40
155	Degradation Products of Aliphatic and Aliphatic–Aromatic Polyesters. , 2008, , 85-116.		37
156	ESI-MS Reveals the Influence of Hydrophilicity and Architecture on the Water-Soluble Degradation Product Patterns of Biodegradable Homo- and Copolyesters of 1,5-dioxepan-2-one and Îμ-Caprolactone. Macromolecules, 2008, 41, 3547-3554.	4.8	58
157	Tuning the Release Rate of Acidic Degradation Products through Macromolecular Design of Caprolactone-Based Copolymers. Journal of the American Chemical Society, 2007, 129, 6308-6312.	13.7	101
158	Degradation Profile of Poly(ϵâ€caprolactone)–the Influence of Macroscopic and Macromolecular Biomaterial Design. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 1041-1046.	2.2	34
159	Controllable Degradation Product Migration from Cross-Linked Biomedical Polyester-Ethers through Predetermined Alterations in Copolymer Composition. Biomacromolecules, 2007, 8, 2025-2032.	5.4	50
160	Designed Chain Architecture for Enhanced Migration Resistance and Property Preservation in Poly(vinyl chloride)/Polyester Blends. Biomacromolecules, 2007, 8, 1187-1194.	5.4	31
161	Migration resistant polymeric plasticizer for poly(vinyl chloride). Journal of Applied Polymer Science, 2007, 104, 2458-2467.	2.6	65
162	Miscibility and surface segregation in PVC/polyester blends—The influence of chain architecture and composition. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1552-1563.	2.1	13

#	Article	IF	CITATIONS
163	Developments in multiple headspace extraction. Journal of Proteomics, 2007, 70, 229-233.	2.4	48
164	Quantitative Determination of Volatiles in Polymers and Quality Control of Recycled Materials by Static Headspace Techniques. , 2007, , 51-84.		8
165	Indicator Products and Chromatographic Fingerprinting: New Tools for Degradation State and Lifetime Estimation. , 2007, , 1-22.		4
166	Solid Phase Microextraction for Analysis of Polymer Degradation Products and Additives. , 2007, , 23-50.		22
167	Finalizing the properties of porous scaffolds of aliphatic polyesters through radiation sterilization. Biomaterials, 2006, 27, 5335-5347.	11.4	56
168	Multiple headspace single-drop microextraction—a new technique for quantitative determination of styrene in polystyrene. Journal of Chromatography A, 2006, 1102, 91-95.	3.7	33
169	Phenolic prepreg waste as functional filler with antioxidant effect in polypropylene and polyamide-6. Polymer Degradation and Stability, 2006, 91, 1815-1823.	5.8	11
170	Chromatographic Analysis and Total Luminescence Intensity as Tools for Early Degradation Detection and Degradation State Estimation. ACS Symposium Series, 2006, , 307-319.	0.5	1
171	Emission of Volatiles from Polymers — A New Approach for Understanding Polymer Degradation. Journal of Polymers and the Environment, 2006, 14, 9-13.	5.0	17
172	Environmentally friendly plasticizers for poly(vinyl chloride)—Improved mechanical properties and compatibility by using branched poly(butylene adipate) as a polymeric plasticizer. Journal of Applied Polymer Science, 2006, 100, 2180-2188.	2.6	99
173	Indicator Products: A New Tool for Lifetime Prediction of Polymeric Materials. Biomacromolecules, 2005, 6, 775-779.	5.4	19
174	Recycling of Glass Fibre Reinforced Phenolic Prepreg Waste Part 1. Recovery and Reuse of Glass Fibres in PP and PA6. Polymers and Polymer Composites, 2004, 12, 491-500.	1.9	2
175	Recycling of Glass-fibre Reinforced Phenolic Prepreg Waste. Part 2. Milled Prepreg as Functional Filler in PP and PA6. Polymers and Polymer Composites, 2004, 12, 501-509.	1.9	2
176	Development of a solid-phase extraction method for simultaneous extraction of adipic acid, succinic acid and 1,4-butanediol formed during hydrolysis of poly(butylene adipate) and poly(butylene) Tj ETQq0 0 0 rgE	FT /Ov ærloc	:k 1 0 8Tf 50 21
177	Correlation between emitted and total amount of 2-cyclopentyl-cyclopentanone in polyamide 6.6 allows rapid assessment by HS and HS-SPME under non-equilibrium conditions. Journal of Chromatography A, 2004, 1052, 151-159.	3.7	14
178	Quantitative determination of degradation products an effective means to study early stages of degradation in linear and branched poly(butylene adipate) and poly(butylene succinate). Polymer Degradation and Stability, 2004, 83, 487-493.	5.8	55
179	Multiple headspace solid-phase microextraction of 2-cyclopentyl-cyclopentanone in polyamide 6.6: possibilities and limitations in the headspace analysis of solid hydrogen-bonding matrices. Journal of Chromatography A, 2004, 1052, 61-68.	3.7	34
180	Environmental Degradation of Polyethylene. Advances in Polymer Science, 2004, , 177-200.	0.8	122

#	Article	IF	CITATIONS
181	Solid-phase microextraction (SPME) in polymer characterization-Long-term properties and quality control of polymeric materials. Journal of Applied Polymer Science, 2003, 89, 867-873.	2.6	34
182	Qualitative and quantitative solid-phase microextraction gas chromatographic–mass spectrometric determination of the low-molecular-mass compounds released from poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 9-16.	Tf 50,702	Td (chloride)/
183	New PVC materials for medical applications—the release profile of PVC/polycaprolactone–polycarbonate aged in aqueous environments. Polymer Degradation and Stability, 2003, 80, 451-458.	5.8	44
184	Migration and Emission of Plasticizer and Its Degradation Products during Thermal Aging of Nitrile Rubber. International Journal of Polymer Analysis and Characterization, 2003, 8, 279-293.	1.9	11
185	Aliphatic Polyesters: Abiotic and Biotic Degradation and Degradation Products. Advances in Polymer Science, 2002, , 113-138.	0.8	207
186	Heterogeneous biodegradation of polycaprolactone – low molecular weight products and surface changes. Macromolecular Chemistry and Physics, 2002, 203, 1357-1363.	2.2	66
187	Headspace solid-phase microextraction with gas chromatography/mass spectrometry reveals a correlation between the degradation product pattern and changes in the mechanical properties during the thermooxidation of in-plant recycled polyamide 6,6. Journal of Applied Polymer Science, 2002. 86. 3396-3407.	2.6	51
188	Headspace solid-phase microextraction — a tool for new insights into the long-term thermo-oxidation mechanism of polyamide 6.6. Journal of Chromatography A, 2001, 932, 1-11.	3.7	71
189	Influence of low molecular weight lactic acid derivatives on degradability of polylactide. Journal of Applied Polymer Science, 2000, 76, 228-239.	2.6	45
190	Rapid (bio)degradation of polylactide by mixed culture of compost microorganisms—low molecular weight products and matrix changes. Polymer, 2000, 41, 2331-2338.	3.8	129
191	Prediction by multivariate data analysis of long-term properties of glassfiber reinforced polyester composites. Polymer Degradation and Stability, 1999, 64, 91-99.	5.8	12
192	Title is missing!. Journal of Polymers and the Environment, 1998, 6, 187-195.	5.0	114
193	Dicarboxylic Acids and Ketoacids Formed in Degradable Polyethylenes by Zip Depolymerization through a Cyclic Transition State. Macromolecules, 1997, 30, 7721-7728.	4.8	76
194	Solid phase microextraction (SPME) as an effective means to isolate degradation products in polymers. Journal of Polymers and the Environment, 1997, 5, 67-73.	0.6	58
195	Susceptibility of starch-filled and starch-based LDPE to oxygen in water and air. Journal of Applied Polymer Science, 1997, 66, 959-967.	2.6	44
196	Properties of injection moulded starch/synthetic polymer blends—I. Effect of processing parameters on physical properties. European Polymer Journal, 1996, 32, 999-1010.	5.4	49
197	Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polymer Degradation and Stability, 1996, 52, 283-291.	5.8	224
198	Solid-phase extraction and subsequent gas chromatography-mass spectrometry analysis for identification of complex mixtures of degradation products in starch-based polymers. Journal of Chromatography A, 1996, 741, 251-263.	3.7	43

#	Article	IF	CITATIONS
199	Identification by headspace gas chromatography-mass spectrometry of in vitro degradation products of homo- and copolymers of I- and d,I-lactide and 1,5-dioxepan-2-one. Journal of Chromatography A, 1994, 688, 251-259.	3.7	45
200	Liquid-crystalline behaviour of some carboxylic acids. Polymer Bulletin, 1993, 31, 43-48.	3.3	1
201	Levulinic Acid as a Versatile Building Block for Plasticizer Design. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	17