PaweÅ, Horodecki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6123232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature and precipitation affect seasonal changes in mite communities (Acari: Mesostigmata) in decomposing litter of broadleaved and coniferous temperate tree species. Annals of Forest Science, 2022, 79, .	0.8	10
2	Does litter decomposition affect mite communities (Acari, Mesostigmata)? A five-year litterbag experiment with 14 tree species in mixed forest stands growing on a post-industrial area. Geoderma, 2021, 391, 114963.	2.3	13
3	Predatory mite instars (Acari, Mesostigmata) and decomposing tree leaves in mixed and monoculture stands growing on a spoil heap and surrounding forests. Experimental and Applied Acarology, 2021, 84, 703-731.	0.7	3
4	Consequences of different sample drying temperatures for accuracy of biomass inventories in forest ecosystems. Scientific Reports, 2020, 10, 16009.	1.6	3
5	Differences in biomass production and carbon sequestration between highland and lowland stands of Picea abies (L.) H. Karst. and Fagus sylvatica L Forest Ecology and Management, 2020, 474, 118329.	1.4	15
6	Biological Flora of the British Isles: <i>Quercus rubra</i> . Journal of Ecology, 2020, 108, 1199-1225.	1.9	21
7	Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland. European Journal of Forest Research, 2019, 138, 673-683.	1.1	28
8	Tree and stand level estimations of Abies alba Mill. aboveground biomass. Annals of Forest Science, 2019, 76, 1.	0.8	25
9	Site Type Effect on Litter Decomposition Rates: A Three-Year Comparison of Decomposition Process between Spoil Heap and Forest Sites. Forests, 2019, 10, 353.	0.9	19
10	Mite Communities (Acari, Mesostigmata) in the Initially Decomposed â€~Litter Islands' of 11 Tree Species in Scots Pine (Pinus sylvestris L.) Forest. Forests, 2019, 10, 403.	0.9	15
11	Advantages of mixed tree stands in restoration of upper soil layers on postmining sites: A fiveâ€year leaf litter decomposition experiment. Land Degradation and Development, 2019, 30, 3-13.	1.8	32
12	Succession of Tree Species on Drained Bogs in â€~Brzozowe Bagno koÅ,o Czaplinka' Nature Reserve, NW Poland. Polish Journal of Ecology, 2019, 66, 352.	0.2	2
13	Limited dispersal prevents <i>Quercus rubra</i> invasion in a 14â€species common garden experiment. Diversity and Distributions, 2018, 24, 403-414.	1.9	31
14	How do tree stand parameters affect young Scots pine biomass? – Allometric equations and biomass conversion and expansion factors. Forest Ecology and Management, 2018, 409, 74-83.	1.4	37
15	Tree species effects on bryophyte guilds on a reclaimed post-mining site. Ecological Engineering, 2018, 110, 117-127.	1.6	40
16	Succession of Mite Assemblages (Acari, Mesostigmata) during Decomposition of Tree Leaves in Forest Stands Growing on Reclaimed Post-Mining Spoil Heap and Adjacent Forest Habitats. Forests, 2018, 9, 718.	0.9	18
17	Tree- and Stand-Level Biomass Estimation in a Larix decidua Mill. Chronosequence. Forests, 2018, 9, 587.	0.9	27
18	Response of soil mites (Acari, Mesostigmata) to long-term Norway spruce plantation along a mountain stream. Experimental and Applied Acarology, 2018, 76, 269-286.	0.7	12

PaweÅ, Horodecki

#	Article	IF	CITATIONS
19	Impacts of soil conditions and light availability on natural regeneration of Norway spruce Picea abies (L.) H. Karst. in low-elevation mountain forests. Annals of Forest Science, 2018, 75, 1.	0.8	16
20	Natural forest remnants as refugia for bryophyte diversity in a transformed mountain river valley landscape. Science of the Total Environment, 2018, 640-641, 954-964.	3.9	25
21	Plant communities of the Czerwona Woda River Valley (StoÅ,owe Mountains National Park). Forest Research Papers, 2018, 79, 181-197.	0.2	3
22	Do understorey or overstorey traits drive tree encroachment on a drained raised bog?. Plant Biology, 2017, 19, 571-583.	1.8	8
23	Tree species effects on litter decomposition in pure stands on afforested post-mining sites. Forest Ecology and Management, 2017, 406, 1-11.	1.4	86
24	Natural regeneration in the â€~Czmoń' nature reserve (Wielkopolska Region). Forest Research Papers, 2014, 75, 61-75.	0.2	2
25	Aboveground biomass allocation and accumulation in a chronosequence of young Pinus sylvestris stands growing on a lignite mine spoil heap. Dendrobiology, 0, 72, 139-150.	0.6	25
26	Light and propagule pressure affect invasion intensity of Prunus serotina in a 14-tree species forest common garden experiment. NeoBiota, 0, 46, 1-21.	1.0	18
27	Soil mite communities structure (Acari, Mesostigmata) during litter decomposition of seven tree species in pure Scots pine stands (<i>Pinus sylvestris</i> L.) growing on a reclaimed postâ€industrial area. Land Degradation and Development, 0, , .	1.8	0