José L Mascareñas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6123153/publications.pdf

Version: 2024-02-01

235 papers 10,539 citations

54 h-index 87 g-index

292 all docs 292 docs citations

times ranked

292

6698 citing authors

#	Article	IF	Citations
1	Transitionâ€Metalâ€Catalyzed Annulations Involving the Activation of C(sp ³)â^'H Bonds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
2	Deactivation of a dimeric DNA-binding peptide through a palladium-mediated self-immolative cleavage. RSC Advances, 2022, 12, 3500-3504.	1.7	3
3	Palladiumâ€Catalyzed Tandem Cycloisomerization/Crossâ€Coupling of Carbonyl―and Imineâ€Tethered Alkylidenecyclopropanes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
4	Exporting Homogeneous Transition Metal Catalysts to Biological Habitats. European Journal of Organic Chemistry, 2022, 2022, .	1.2	17
5	Organometallic catalysis in aqueous and biological environments: harnessing the power of metal carbenes. Chemical Science, 2022, 13, 6478-6495.	3.7	14
6	Controlling oncogenic KRAS signaling pathways with a Palladium-responsive peptide. Communications Chemistry, 2022, 5, .	2.0	1
7	Transition Metalâ€Promoted Reactions in Aqueous Media and Biological Settings. Chemistry - A European Journal, 2021, 27, 4789-4816.	1.7	55
8	Frontispiece: Transition Metalâ€Promoted Reactions in Aqueous Media and Biological Settings. Chemistry - A European Journal, 2021, 27, .	1.7	0
9	Kinetic Resolution of Allyltriflamides through a Pd-Catalyzed C–H Functionalization with Allenes: Asymmetric Assembly of Tetrahydropyridines. Journal of the American Chemical Society, 2021, 143, 3747-3752.	6.6	33
10	Highly Enantioselective Cobaltâ€Catalyzed (3+2) Cycloadditions of Alkynylidenecyclopropanes. Angewandte Chemie - International Edition, 2021, 60, 8182-8188.	7.2	17
11	Highly Enantioselective Cobalt atalyzed (3+2) Cycloadditions of Alkynylidenecyclopropanes. Angewandte Chemie, 2021, 133, 8263-8269.	1.6	7
12	Assembly of Tetrahydroquinolines and 2-Benzazepines by Pd-Catalyzed Cycloadditions Involving the Activation of C(sp ³)–H Bonds. Organic Letters, 2021, 23, 5323-5328.	2.4	21
13	Bioorthogonal Azide–Thioalkyne Cycloaddition Catalyzed by Photoactivatable Ruthenium(II) Complexes. Angewandte Chemie - International Edition, 2021, 60, 16059-16066.	7.2	27
14	Rhodium(III)â€Catalyzed Formal Cycloaddition between Thienopyridine/Thienopyrazine Carboxylic Acids and Alkynes, Triggered by Câ^'H Activation. European Journal of Organic Chemistry, 2021, 2021, 3234-3240.	1.2	1
15	Bioorthogonal Azide–Thioalkyne Cycloaddition Catalyzed by Photoactivatable Ruthenium(II) Complexes. Angewandte Chemie, 2021, 133, 16195-16202.	1.6	0
16	Highly Enantioselective Iridium(I)â€Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angewandte Chemie - International Edition, 2021, 60, 19297-19305.	7.2	27
17	A novel \hat{I}^2 -hairpin peptide derived from the ARC repressor selectively interacts with the major groove of B-DNA. Bioorganic Chemistry, 2021, 112, 104836.	2.0	10
18	Highly Enantioselective Iridium(I)â€Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angewandte Chemie, 2021, 133, 19446-19454.	1.6	3

#	Article	IF	CITATIONS
19	Exporting Metalâ€Carbene Chemistry to Live Mammalian Cells: Copperâ€Catalyzed Intracellular Synthesis of Quinoxalines Enabled by Nâ^'H Carbene Insertions. Angewandte Chemie, 2021, 133, 22188-22196.	1.6	3
20	Exporting Metalâ€Carbene Chemistry to Live Mammalian Cells: Copperâ€Catalyzed Intracellular Synthesis of Quinoxalines Enabled by Nâ^'H Carbene Insertions. Angewandte Chemie - International Edition, 2021, 60, 22017-22025.	7.2	23
21	(4 + 2) Cycloadditions via Pd C(sp3)–H activation. Trends in Chemistry, 2021, 3, 1102-1103.	4.4	O
22	Plasmonic-Assisted Thermocyclizations in Living Cells Using Metal–Organic Framework Based Nanoreactors. ACS Nano, 2021, 15, 16924-16933.	7.3	20
23	TiO ₂ â€Based Photocatalysis at the Interface with Biology and Biomedicine. ChemBioChem, 2020, 21, 294-309.	1.3	22
24	Stimuli-Responsive DNA Binding by Synthetic Systems. Accounts of Chemical Research, 2020, 53, 2286-2298.	7.6	16
25	Remote Activation of Hollow Nanoreactors for Heterogeneous Photocatalysis in Biorelevant Media. Nano Letters, 2020, 20, 7068-7076.	4.5	34
26	[C^N]â€Alkenyl Gold(III) Complexes by Proximal Ringâ€Opening of (2â€Pyridyl)alkylidenecyclopropanes: Mechanistic Insights. Angewandte Chemie - International Edition, 2020, 59, 20049-20054.	7.2	10
27	Surface-Enhanced Raman Scattering Detection of Nucleic Acids Exhibiting Sterically Accessible Guanines Using Ruthenium-Polypyridyl Reagents. Journal of Physical Chemistry Letters, 2020, 11, 7218-7223.	2.1	5
28	[C^N]â€Alkenyl Gold(III) Complexes by Proximal Ringâ€Opening of (2â€Pyridyl)alkylidenecyclopropanes: Mechanistic Insights. Angewandte Chemie, 2020, 132, 20224-20229.	1.6	2
29	Catalytic addition of C–H bonds across C–C unsaturated systems promoted by iridium(<scp>i</scp>) and its group IX congeners. Chemical Society Reviews, 2020, 49, 7378-7405.	18.7	73
30	Pd-Catalyzed (3 + 2) Heterocycloadditions between Alkylidenecyclopropanes and Carbonyls: Straightforward Assembly of Highly Substituted Tetrahydrofurans. ACS Catalysis, 2020, 10, 7710-7718.	5 . 5	15
31	Core-Shell Palladium/MOF Platforms as Diffusion-Controlled Nanoreactors in Living Cells and Tissue Models. Cell Reports Physical Science, 2020, 1, 100076.	2.8	35
32	Intracellular Reactions Promoted by Bis(histidine) Miniproteins Stapled Using Palladium(II) Complexes. Angewandte Chemie - International Edition, 2020, 59, 9149-9154.	7.2	61
33	Assembly of a Ternary Metallopeptide Complex at Specific DNA Sites Mediated by an ATâ€Hook Adaptor. Chemistry - A European Journal, 2020, 26, 8875-8878.	1.7	7
34	Intracellular Rutheniumâ€Promoted (2+2+2) Cycloadditions. Angewandte Chemie, 2020, 132, 17781-17786.	1.6	13
35	Intracellular Rutheniumâ€Promoted (2+2+2) Cycloadditions. Angewandte Chemie - International Edition, 2020, 59, 17628-17633.	7.2	41
36	Reversible Control of Protein Corona Formation on Gold Nanoparticles Using Host–Guest Interactions. ACS Nano, 2020, 14, 5382-5391.	7.3	48

#	Article	IF	CITATIONS
37	MitoBlue as a tool to analyze the mitochondria-lysosome communication. Scientific Reports, 2020, 10, 3528.	1.6	7
38	Palladium-Catalyzed Formal (4+2) Cycloaddition between Alkyl Amides and Dienes Initiated by the Activation of C(sp $<$ sup $>$ 3 $<$ /sup $>$) \hat{a} \in "H Bonds. ACS Catalysis, 2020, 10, 3425-3430.	5.5	26
39	Intracellular Reactions Promoted by Bis(histidine) Miniproteins Stapled Using Palladium(II) Complexes. Angewandte Chemie, 2020, 132, 9234-9239.	1.6	18
40	Skeletal diversity in Pt- and Au-catalyzed annulations of allenedienes: dissecting unconventional mechanistic pathways. Chemical Science, 2020, 11, 4209-4220.	3.7	1
41	Canonical DNA minor groove insertion of bisbenzamidine–Ru(<scp>ii</scp>) complexes with chiral selectivity. Chemical Science, 2019, 10, 8668-8674.	3.7	8
42	Supramolecular caging for cytosolic delivery of anionic probes. Chemical Science, 2019, 10, 8930-8938.	3.7	21
43	Practical, Large-Scale Preparation of Benzoxepines and Coumarins through Rhodium(III)-Catalyzed C–H Activation/Annulation Reactions. Organic Process Research and Development, 2019, 23, 1669-1673.	1.3	16
44	Hollow nanoreactors for Pd-catalyzed Suzuki–Miyaura coupling and <i>O</i> -propargyl cleavage reactions in bio-relevant aqueous media. Chemical Science, 2019, 10, 2598-2603.	3.7	77
45	A chemical approach for the synthesis of the DNA-binding domain of the oncoprotein MYC. Organic and Biomolecular Chemistry, 2019, 17, 6748-6752.	1.5	5
46	Ruthenium-Catalyzed Redox Isomerizations inside Living Cells. Journal of the American Chemical Society, 2019, 141, 5125-5129.	6.6	65
47	Rhodium(III)-Catalyzed Intramolecular Annulations of Acrylic and Benzoic Acids to Alkynes. ACS Omega, 2019, 4, 6257-6263.	1.6	17
48	Allenes and Derivatives in Gold(I)- and Platinum(II)-Catalyzed Formal Cycloadditions. Accounts of Chemical Research, 2019, 52, 465-479.	7.6	178
49	Palladium-Catalyzed, Enantioselective Formal Cycloaddition between Benzyltriflamides and Allenes: Straightforward Access to Enantioenriched Isoquinolines. Journal of the American Chemical Society, 2019, 141, 1862-1866.	6.6	42
50	Rhodiumâ€Catalyzed Annulation of ortho â€Alkenyl Anilides with Alkynes: Formation of Unexpected Naphthalene Adducts. Angewandte Chemie, 2019, 131, 1714-1718.	1.6	1
51	Rhodiumâ€Catalyzed Annulation of <i>ortho</i> â€Alkenyl Anilides with Alkynes: Formation of Unexpected Naphthalene Adducts. Angewandte Chemie - International Edition, 2019, 58, 1700-1704.	7.2	31
52	DNA-binding miniproteins based on zinc fingers. Assessment of the interaction using nanopores. Chemical Science, 2018, 9, 4118-4123.	3.7	10
53	Organometallic catalysis in biological media and living settings. Coordination Chemistry Reviews, 2018, 359, 57-79.	9.5	86
54	Discrete Cu(<scp>i</scp>) complexes for azide–alkyne annulations of small molecules inside mammalian cells. Chemical Science, 2018, 9, 1947-1952.	3.7	47

#	Article	IF	Citations
55	Rhodium(III)â€Catalyzed Annulation of 2â€Alkenyl Anilides with Alkynes through Câ^'H Activation: Direct Access to 2â€Substituted Indolines. Angewandte Chemie, 2018, 130, 8387-8391.	1.6	15
56	Rhodium(III)â€Catalyzed Annulation of 2â€Alkenyl Anilides with Alkynes through Câ^'H Activation: Direct Access to 2â€Substituted Indolines. Angewandte Chemie - International Edition, 2018, 57, 8255-8259.	7.2	66
57	Cellular Uptake of Gold Nanoparticles Triggered by Host–Guest Interactions. Journal of the American Chemical Society, 2018, 140, 4469-4472.	6.6	61
58	Gold(I)-Catalyzed Enantioselective Annulations between Allenes and Alkene-Tethered Oxime Ethers: A Straight Entry to Highly Substituted Piperidines and <i>aza</i> -Bridged Medium-Sized Carbocycles. Journal of the American Chemical Society, 2018, 140, 16821-16833.	6.6	44
59	Transition Metal-mediated Reactions in Biological Media. Chimia, 2018, 72, 791.	0.3	16
60	Intracellular Deprotection Reactions Mediated by Palladium Complexes Equipped with Designed Phosphine Ligands. ACS Catalysis, 2018, 8, 6055-6061.	5.5	78
61	Concurrent and orthogonalÂgold(I) and ruthenium(II) catalysisÂinside living cells. Nature Communications, 2018, 9, 1913.	5 . 8	110
62	Iridium(I)-Catalyzed Intramolecular Cycloisomerization of Enynes: Scope and Mechanistic Course. ACS Catalysis, 2018, 8, 7397-7402.	5.5	26
63	Enantioselective Palladium-Catalyzed $[3C+2C]$ and $[4C+3C]$ Intramolecular Cycloadditions of Alkylidenecyclopropanes. ACS Catalysis, 2018, 8, 6100-6105.	5.5	51
64	Gold(I)-Catalyzed Enantioselective [2+2+2] Cycloadditions: An Expedient Entry to Enantioenriched Tetrahydropyran Scaffolds. ACS Catalysis, 2017, 7, 2397-2402.	5.5	48
65	Recruitment of RNA molecules by connexin RNA-binding motifs: Implication in RNA and DNA transport through microvesicles and exosomes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 728-736.	1.9	45
66	Iridium(I) atalyzed Intramolecular Hydrocarbonation of Alkenes: Efficient Access to Cyclic Systems Bearing Quaternary Stereocenters. Angewandte Chemie - International Edition, 2017, 56, 9541-9545.	7.2	59
67	Palladium-Catalyzed Formal (5 + 2) Annulation between <i>ortho</i> -Alkenylanilides and Allenes. Organic Letters, 2017, 19, 1674-1677.	2.4	48
68	Anion Recognition as a Supramolecular Switch of Cell Internalization. Journal of the American Chemical Society, 2017, 139, 55-58.	6.6	44
69	Metal-Dependent DNA Recognition and Cell Internalization of Designed, Basic Peptides. Journal of the American Chemical Society, 2017, 139, 16188-16193.	6.6	20
70	Ruthenium atalyzed Azide–Thioalkyne Cycloadditions in Aqueous Media: A Mild, Orthogonal, and Biocompatible Chemical Ligation. Angewandte Chemie, 2017, 129, 10906-10910.	1.6	32
71	Ruthenium atalyzed Azide–Thioalkyne Cycloadditions in Aqueous Media: A Mild, Orthogonal, and Biocompatible Chemical Ligation. Angewandte Chemie - International Edition, 2017, 56, 10766-10770.	7.2	99
72	Iridium(I)â€Catalyzed Intramolecular Hydrocarbonation of Alkenes: Efficient Access to Cyclic Systems Bearing Quaternary Stereocenters. Angewandte Chemie, 2017, 129, 9669-9673.	1.6	18

#	Article	IF	CITATIONS
73	Metalâ€Catalyzed Annulations through Activation and Cleavage of Câ^'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 11000-11019.	7.2	455
74	Metallkatalysierte Anellierungen durch Aktivierung und Spaltung von Câ€Hâ€Bindungen. Angewandte Chemie, 2016, 128, 11164-11184.	1.6	124
75	Transition metal catalysis in the mitochondria of living cells. Nature Communications, 2016, 7, 12538.	5.8	171
76	Ruthenation of Nonâ€stacked Guanines in DNA Gâ€Quadruplex Structures: Enhancement of <i>câ€MYC</i> Expression. Angewandte Chemie, 2016, 128, 15844-15847.	1.6	2
77	Palladium(II)-Catalyzed Annulation between <i>ortho</i> -Alkenylphenols and Allenes. Key Role of the Metal Geometry in Determining the Reaction Outcome. ACS Catalysis, 2016, 6, 3349-3353.	5 . 5	76
78	Synthesis of Oxygenated Heterocyclic Compounds via Gold-Catalyzed Functionalization of π-Systems. Topics in Heterocyclic Chemistry, 2016, , 1-52.	0.2	2
79	Surface-Enhanced Raman Scattering Surface Selection Rules for the Proteomic Liquid Biopsy in Real Samples: Efficient Detection of the Oncoprotein c-MYC. Journal of the American Chemical Society, 2016, 138, 14206-14209.	6.6	72
80	Concise, Enantioselective, and Versatile Synthesis of (â^')â€Englerinâ€A Based on a Platinumâ€Catalyzed [4C+3C] Cycloaddition of Allenedienes. Angewandte Chemie - International Edition, 2016, 55, 14359-14363.	7.2	40
81	Nickelâ€Promoted Recognition of Long DNA Sites by Designed Peptide Derivatives. Chemistry - A European Journal, 2016, 22, 13474-13477.	1.7	10
82	Lightâ€Controlled Cellular Internalization and Cytotoxicity of Nucleic Acidâ€Binding Agents: Studies in Vitro and in Zebrafish Embryos. ChemBioChem, 2016, 17, 37-41.	1.3	9
83	Ruthenation of Nonâ€stacked Guanines in DNA Gâ€Quadruplex Structures: Enhancement of <i>câ€MYC</i> Expression. Angewandte Chemie - International Edition, 2016, 55, 15615-15618.	7.2	23
84	Amide-Directed Formation of Five-Coordinate Osmium Alkylidenes from Alkynes. Organometallics, 2016, 35, 91-99.	1.1	30
85	A designed DNA binding motif that recognizes extended sites and spans two adjacent major grooves. Chemical Science, 2016, 7, 3298-3303.	3.7	28
86	Coupling the folding of a \hat{l}^2 -hairpin with chelation-enhanced luminescence of Tb($\langle scp \rangle iii \langle scp \rangle$) and Eu($\langle scp \rangle iii \langle scp \rangle$) ions for specific sensing of a viral RNA. Chemical Science, 2016, 7, 2674-2678.	3.7	10
87	Synergistic gold and enamine catalysis: intermolecular \hat{l}_{\pm} -alkylation of aldehydes with allenamides. Chemical Communications, 2016, 52, 2909-2912.	2.2	33
88	Identification of Cyclin A Binders with a Fluorescent Peptide Sensor. Methods in Molecular Biology, 2016, 1336, 67-83.	0.4	0
89	Concise, Enantioselective, and Versatile Synthesis of (â^')â€Englerinâ€A Based on a Platinumâ€Catalyzed [4C+3C] Cycloaddition of Allenedienes. Angewandte Chemie, 2016, 128, 14571-14575.	1.6	13
90	Rhodiumâ€Catalyzed (5+1) Annulations Between 2â€Alkenylphenols and Allenes: A Practical Entry to 2,2â€Disubstituted 2 <i>H</i> â€Chromenes. Angewandte Chemie, 2015, 127, 2404-2407.	1.6	39

#	Article	lF	Citations
91	The AT-Hook motif as a versatile minor groove anchor for promoting DNA binding of transcription factor fragments. Chemical Science, 2015, 6, 4767-4771.	3.7	29
92	Synthesis, Characterization, and DNA Binding Profile of a Macrocyclic β-Sheet Analogue of ARC Protein. ACS Medicinal Chemistry Letters, 2015, 6, 1220-1224.	1.3	16
93	Rhodiumâ€Catalyzed (5+1) Annulations Between 2â€Alkenylphenols and Allenes: A Practical Entry to 2,2â€Disubstituted 2 <i>H</i> à€Chromenes. Angewandte Chemie - International Edition, 2015, 54, 2374-2377.	7.2	129
94	Synthetic peptides caged on histidine residues with a bisbipyridyl ruthenium(<scp>ii</scp>) complex that can be photolyzed by visible light. Chemical Communications, 2015, 51, 5501-5504.	2.2	34
95	Sequence-selective DNA binding with cell-permeable oligoguanidinium–peptide conjugates. Chemical Communications, 2015, 51, 4811-4814.	2.2	10
96	Gold($\langle scp \rangle i \langle scp \rangle$)-catalyzed [2 + 2 + 2] cycloaddition of allenamides, alkenes and aldehydes: a straightforward approach to tetrahydropyrans. Chemical Science, 2015, 6, 2903-2908.	3.7	61
97	Jose Luis Mascareñas. Angewandte Chemie - International Edition, 2015, 54, 10710-10710.	7.2	0
98	Peptide–DNA conjugates as tailored bivalent binders of the oncoprotein c-Jun. Organic and Biomolecular Chemistry, 2015, 13, 5385-5390.	1.5	14
99	Fluorescenceâ€Labeled Bisâ€benzamidines as Fluorogenic DNA Minorâ€Groove Binders: Photophysics and Binding Dynamics. Chemistry - A European Journal, 2015, 21, 1609-1619.	1.7	7
100	Gold(I)-Catalyzed Intermolecular Cycloaddition of Allenamides with $\hat{l}\pm,\hat{l}^2$ -Unsaturated Hydrazones: Efficient Access to Highly Substituted Cyclobutanes. Organic Letters, 2014, 16, 6196-6199.	2.4	51
101	Reversible Supramolecular Assembly at Specific DNA Sites: Nickelâ€Promoted Bivalent DNA Binding with Designed Peptide and Bipyridyl–Bis(benzamidine) Components. Angewandte Chemie - International Edition, 2014, 53, 9917-9921.	7.2	41
102	Metal-catalyzed uncaging of DNA-binding agents in living cells. Chemical Science, 2014, 5, 1901-1907.	3.7	98
103	Selective DNAâ€Binding by Designed Bisbenzamidineâ€Homeodomain Chimeras. ChemBioChem, 2014, 15, 1092-1095.	1.3	8
104	Straightforward Assembly of Benzoxepines by Means of a Rhodium(III)-Catalyzed C–H Functionalization of <i>o</i> -Vinylphenols. Journal of the American Chemical Society, 2014, 136, 834-837.	6.6	247
105	MitoBlue: A Nontoxic and Photostable Blue-Emitting Dye That Selectively Labels Functional Mitochondria. ACS Chemical Biology, 2014, 9, 2742-2747.	1.6	10
106	Ruthenium bipyridyl complexes as photocleavable dimerizers: deactivation of DNA-binding peptides using visible light. Chemical Communications, 2014, 50, 10975-10978.	2.2	20
107	The ββα fold of zinc finger proteins as a "natural―protecting group. Chemoselective synthesis of a DNA-binding zinc finger derivative. Chemical Communications, 2014, 50, 2258.	2.2	16
108	5.13 (4+3) Cycloadditions., 2014,, 595-655.		18

#	Article	IF	Citations
109	[4+2] and [4+3] catalytic cycloadditions of allenes. Chemical Society Reviews, 2014, 43, 2904-2915.	18.7	214
110	Nickel-Catalyzed Intramolecular $[3+2+2]$ Cycloadditions of Alkylidenecyclopropanes. A Straightforward Entry to Fused 6,7,5-Tricyclic Systems. Organic Letters, 2014, 16, 5008-5011.	2.4	49
111	Rhodiumâ€Catalyzed Intramolecular [3+2+2] Cycloadditions between Alkylidenecyclopropanes, Alkynes, and Alkenes. Chemistry - A European Journal, 2014, 20, 10255-10259.	1.7	42
112	Rhodium(III)-Catalyzed Dearomatizing $(3 + 2)$ Annulation of 2-Alkenylphenols and Alkynes. Journal of the American Chemical Society, 2014, 136, 7607-7610.	6.6	213
113	Metal-catalyzed uncaging of DNA-binding agents in living cells. Chemical Science, 2014, 2014, 1901-1907.	3.7	2
114	Toward encoding reactivity using double-stranded DNA. Sequence-dependent native chemical ligation of DNA binding polyamides. Tetrahedron, 2013, 69, 7847-7853.	1.0	6
115	Sequenceâ€Selective DNA Recognition with Peptide–Bisbenzamidine Conjugates. Chemistry - A European Journal, 2013, 19, 9923-9929.	1.7	21
116	A Folding-Based Approach for the Luminescent Detection of a Short RNA Hairpin. Journal of the American Chemical Society, 2013, 135, 3812-3814.	6.6	22
117	Highly Sensitive SERS Quantification of the Oncogenic Protein c-Jun in Cellular Extracts. Journal of the American Chemical Society, 2013, 135, 10314-10317.	6.6	106
118	Stimuli-responsive selection of target DNA sequences by synthetic bZIP peptides. Nature Communications, 2013, 4, 1874.	5.8	39
119	Gold(I)â€Catalyzed Cascade Cycloadditions between Allenamides and Carbonylâ€Tethered Alkenes: An Enantioselective Approach to Oxaâ€Bridged Mediumâ€Sized Carbocycles. Angewandte Chemie - International Edition, 2013, 52, 6526-6530.	7.2	98
120	Rhodium(iii)-catalyzed intramolecular annulations involving amide-directed C–H activations: synthetic scope and mechanistic studies. Chemical Science, 2013, 4, 2874.	3.7	130
121	Customâ€Fit Ruthenium(II) Metallopeptides: A New Twist to DNA Binding With Coordination Compounds. Chemistry - A European Journal, 2013, 19, 13369-13375.	1.7	22
122	Osmium Models of Intermediates Involved in Catalytic Reactions of Alkylidenecyclopropanes. Organometallics, 2013, 32, 4851-4861.	1.1	15
123	Mechanistic Intricacies of Gold atalyzed Intermolecular Cycloadditions between Allenamides and Dienes. Chemistry - A European Journal, 2013, 19, 15248-15260.	1.7	57
124	Gold(I)â€Catalyzed Cascade Cycloadditions between Allenamides and Carbonylâ€Tethered Alkenes: An Enantioselective Approach to Oxaâ€Bridged Mediumâ€Sized Carbocycles. Angewandte Chemie, 2013, 125, 6654-6658.	1.6	29
125	Gold(I)-catalyzed enantioselective cycloaddition reactions. Beilstein Journal of Organic Chemistry, 2013, 9, 2250-2264.	1.3	111
126	Axially Chiral Triazoloisoquinolin-3-ylidene Ligands in Gold(I)-Catalyzed Asymmetric Intermolecular (4) Tj ETQq0 (14322-14325.	0 0 rgBT /0 6.6	Overlock 10 Tf 182

#	Article	IF	CITATIONS
127	Transition metal-catalysed (4 + 3) cycloaddition reactions involving allyl cations. Organic and Biomolecular Chemistry, 2012, 10, 699-704.	1.5	43
128	Reactions of an Osmium(IV) Complex with Allenedienes: Coordination and Intramolecular Cycloadditions. Organometallics, 2012, 31, 4450-4458.	1.1	19
129	Detection of phosphorylation states by intermolecular sensitization of lanthanide–peptide conjugates. Chemical Communications, 2012, 48, 9534.	2.2	21
130	Straightforward access to bisbenzamidine DNA binders and their use as versatile adaptors for DNA-promoted processes. Chemical Science, 2012, 3, 2383.	3.7	37
131	Palladium-Catalyzed Conjugate Addition of Terminal Alkynes to Enones. Organic Letters, 2012, 14, 2996-2999.	2.4	42
132	Gold(I)â€Catalyzed Intermolecular [2+2] Cycloadditions between Allenamides and Alkenes. Advanced Synthesis and Catalysis, 2012, 354, 1658-1664.	2.1	98
133	Singleâ€Molecule Approach to DNA Minorâ€Groove Association Dynamics. Angewandte Chemie - International Edition, 2012, 51, 7541-7544.	7.2	12
134	Temporary Electrostatic Impairment of DNA Recognition: Lightâ€Driven DNA Binding of Peptide Dimers. Angewandte Chemie - International Edition, 2012, 51, 8825-8829.	7.2	31
135	Mechanistic study on the palladium-catalyzed $(3 + 2)$ intramolecular cycloaddition of alk-5-enylidenecyclopropanes. Dalton Transactions, 2012, 41, 9468.	1.6	21
136	<i>In Vivo</i> Light-Driven DNA Binding and Cellular Uptake of Nucleic Acid Stains. ACS Chemical Biology, 2012, 7, 1276-1280.	1.6	22
137	Light-controlled DNA binding of bisbenzamidines. Chemical Communications, 2011, 47, 11107.	2.2	41
138	Theoretical study on intramolecular allene-diene cycloadditions catalyzed by PtCl2 and Au(i) complexes. Dalton Transactions, 2011, 40, 11095.	1.6	19
139	Gold(i)-catalyzed intermolecular $(4 + 2)$ cycloaddition of allenamides and acyclic dienes. Chemical Science, $2011, 2, 633$.	3.7	85
140	Sensing coiled-coil proteins through conformational modulation of energy transfer processes – selective detection of the oncogenic transcription factor c-Jun. Chemical Science, 2011, 2, 1984.	3.7	13
141	Gold-Catalyzed Cycloadditions Involving Allenes: Mechanistic Insights from Theoretical Studies. Topics in Current Chemistry, 2011, 302, 225-248.	4.0	33
142	Rational design of a cyclin A fluorescent peptide sensor. Organic and Biomolecular Chemistry, 2011, 9, 7629.	1.5	14
143	Ruthenium-Catalyzed ($2+2$) Intramolecular Cycloaddition of Allenenes. Journal of the American Chemical Society, 2011, 133, 7660-7663.	6.6	87
144	Recent developments in gold-catalyzed cycloaddition reactions. Beilstein Journal of Organic Chemistry, 2011, 7, 1075-1094.	1.3	179

#	Article	IF	CITATIONS
145	Enantioselective Gold(I)â€Catalyzed Intramolecular (4+3) Cycloadditions of Allenedienes. Angewandte Chemie - International Edition, 2011, 50, 11496-11500.	7.2	99
146	Allenes as Threeâ€Carbon Units in Catalytic Cycloadditions: New Opportunities with Transitionâ€Metal Catalysts. Chemistry - A European Journal, 2011, 17, 418-428.	1.7	216
147	DNA Recognition by Synthetic Constructs. ChemBioChem, 2011, 12, 1958-1973.	1.3	80
148	Development of transition-metal-catalyzed cycloaddition reactions leading to polycarbocyclic systems. Pure and Applied Chemistry, 2011, 83, 495-506.	0.9	59
149	Concerted and Stepwise Mechanisms in Metalâ€Free and Metalâ€Assisted [4+3] Cycloadditions Involving Allyl Cations. Chemistry - A European Journal, 2010, 16, 12147-12157.	1.7	53
150	Nickelâ€Catalyzed [3+2+2] Cycloadditions between Alkynylidenecyclopropanes and Activated Alkenes. Angewandte Chemie - International Edition, 2010, 49, 9886-9890.	7.2	83
151	Câ^'H Bond Activation of Terminal Allenes: Formation of Hydride-Alkenylcarbyne-Osmium and Disubstituted Vinylidene-Ruthenium Derivatives. Organometallics, 2010, 29, 4966-4974.	1.1	52
152	Ring Expansion versus <i>exo</i> â^' <i>endo</i> Isomerization in (2-Pyridyl)methylenecyclobutane Coordinated to Hydrido(trispyrazolyl)borate- and Cyclopentadienyl-Osmium Complexes. Organometallics, 2010, 29, 2372-2376.	1.1	14
153	Cleavage of Both C(sp ³)â^'C(sp ²) Bonds of Alkylidenecyclopropanes: Formation of Ethyleneâ^'Osmiumâ^'Vinylidene Complexes. Journal of the American Chemical Society, 2010, 132, 454-455.	6.6	51
154	Bis-4-aminobenzamidines: Versatile, Fluorogenic A/T-Selective dsDNA Binders. Organic Letters, 2010, 12, 216-219.	2.4	46
155	dsDNA-triggered energy transfer and lanthanide sensitization processes. Luminescent probing of specific A/T sequences. Chemical Communications, 2010, 46, 5518.	2.2	26
156	Palladium-catalyzed $[3C + 2C + 2C]$ cycloaddition of enynylidenecyclopropanes: efficient construction of fused 5-7-5 tricyclic systems. Chemical Communications, 2010, 46, 270-272.	2.2	79
157	Goldâ€Catalyzed [4C+3C] Intramolecular Cycloaddition of Allenedienes: Synthetic Potential and Mechanistic Implications. Chemistry - A European Journal, 2009, 15, 3336-3339.	1.7	138
158	Palladiumâ€Catalyzed Hydroalkynylation of Alkylidenecyclopropanes. Chemistry - A European Journal, 2009, 15, 13308-13312.	1.7	36
159	Gold-Catalyzed [4C+2C] Cycloadditions of Allenedienes, including an Enantioselective Version with New Phosphoramidite-Based Catalysts: Mechanistic Aspects of the Divergence between [4C+3C] and [4C+2C] Pathways. Journal of the American Chemical Society, 2009, 131, 13020-13030.	6.6	258
160	Formation of Osmiumâ^' and Rutheniumâ^'Cyclobutylidene Complexes by Ring Expansion of Alkylidenecyclopropanes. Journal of the American Chemical Society, 2009, 131, 15572-15573.	6.6	33
161	Peptide-based fluorescent biosensors. Chemical Society Reviews, 2009, 38, 3348.	18.7	159
162	Efficient DNA Binding and Nuclear Uptake by Distamycin Derivatives Conjugated to Octaâ€arginine Sequences. ChemBioChem, 2008, 9, 2822-2829.	1,3	28

#	Article	IF	Citations
163	Palladium-Catalysed [3+2] Cycloaddition of Alk-5-ynylidenecyclopropanes to Alkynes: A Mechanistic DFT Study. Chemistry - A European Journal, 2008, 14, 272-281.	1.7	45
164	Platinumâ€Catalyzed Intramolecular [4C+3C] Cycloaddition between Dienes and Allenes. Angewandte Chemie - International Edition, 2008, 47, 951-954.	7.2	142
165	Cyclin A Probes by Means of Intermolecular Sensitization of Terbium-Chelating Peptides. Journal of the American Chemical Society, 2008, 130, 9652-9653.	6.6	55
166	New developments in the synthesis of oligonucleotide-peptide conjugates. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 963-967.	0.4	4
167	Palladium-Catalyzed [4 + 3] Intramolecular Cycloaddition of Alkylidenecyclopropanes and Dienes. Journal of the American Chemical Society, 2007, 129, 11026-11027.	6.6	116
168	ds-Oligonucleotide–Peptide Conjugates Featuring Peptides from the Leucine-Zipper Region of Fos as Switchable Receptors for the Oncoprotein Jun. ChemBioChem, 2007, 8, 1110-1114.	1.3	24
169	The Oxygen-Bridge Templating Approach to Eight- and Nine-Membered Carbocycles: Recent Developments Based on Catalytic Reactions. Chemistry - A European Journal, 2007, 13, 2172-2178.	1.7	31
170	Specific DNA Recognition by a Synthetic, Monomeric Cys ₂ His ₂ Zincâ€Finger Peptide Conjugated to a Minorâ€Groove Binder. Angewandte Chemie - International Edition, 2007, 46, 6886-6890.	7.2	53
171	Ligand-Induced Acceleration of the Intramolecular [3 + 2] Cycloaddition between Alkynes and Alkylidenecyclopropanes. Organic Letters, 2006, 8, 2899-2899.	2.4	0
172	Palladium-Catalyzed $[3+2]$ Intramolecular Cycloaddition of Alk-5-enylidenecyclopropanes. Journal of the American Chemical Society, 2006, 128, 384-385.	6.6	73
173	Modulating the Rate of a Native Ligation Coupling between Tripyrrole Derivatives by Using Specific dsDNA Sequences. Organic Letters, 2006, 8, 4433-4436.	2.4	11
174	Sequence-Specific DNA Binding by Noncovalent Peptide–Tripyrrole Conjugates. Angewandte Chemie - International Edition, 2006, 45, 8210-8214.	7.2	33
175	Palladium-Catalyzed Intramolecular [3C+2C] Cycloaddition of Alkylidenecyclopropanes to Allenes. Advanced Synthesis and Catalysis, 2006, 348, 2381-2384.	2.1	49
176	Practical Asymmetric Approach to Medium-Sized Carbocycles Based on the Combination of Two Ru-Catalyzed Transformations and a Lewis Acid-Induced Cyclizationâ€. Organic Letters, 2005, 7, 287-290.	2.4	36
177	Sequence-Specific DNA Recognition by Monomeric bZIP Basic Regions Equipped with a Tripyrrole Unit on the N-Terminal Side. Towards the Development of Synthetic Mimics of Skn-1. ChemBioChem, 2005, 6, 2173-2176.	1.3	18
178	High Affinity, Sequence Specific DNA Binding by Synthetic Tripyrrole-Peptide Conjugates. Chemistry - A European Journal, 2005, 11, 4171-4178.	1.7	31
179	Practical Asymmetric Approach to Medium-Sized Carbocycles Based on the Combination of Two Ru-Catalyzed Transformations and a Lewis Acid-Induced Cyclization ChemInform, 2005, 36, no.	0.1	0
180	Divergent reactivity of alk-5-ynylidenecyclopropanes in the presence of the 1st or the 2nd generation Grubbs' catalysts. Journal of Organometallic Chemistry, 2005, 690, 5609-5615.	0.8	14

#	Article	IF	Citations
181	Ligand-Induced Acceleration of the Intramolecular [3 + 2] Cycloaddition between Alkynes and Alkylidenecyclopropanes. Organic Letters, 2005, 7, 5693-5696.	2.4	55
182	Ruthenium-Catalyzed [3 + 2] Intramolecular Cycloaddition of Alk-5-ynylidenecyclopropanes Promoted by the "First-Generation―Grubbs Carbene Complex ChemInform, 2004, 35, no.	0.1	0
183	Ruthenium-Catalyzed [3 + 2] Intramolecular Cycloaddition of Alk-5-ynylidenecyclopropanes Promoted by the "First-Generation―Grubbs Carbene Complex. Journal of the American Chemical Society, 2004, 126, 10262-10263.	6.6	82
184	Synthesis of Fused Oxabicyclic Systems by Metal-Catalyzed Intramolecular Addition of 1,3-Cycloalkyldiones to Alkynes ChemInform, 2003, 34, no.	0.1	0
185	Palladium-Catalyzed [3 + 2] Intramolecular Cycloaddition of Alk-5-ynylidenecyclopropanes: A Rapid, Practical Approach to Bicyclo[3.3.0]octenes ChemInform, 2003, 34, no.	0.1	0
186	A Synthetic Miniprotein that Binds Specific DNA Sequences by Contacting Both the Major and the Minor Groove. Chemistry and Biology, 2003, 10, 713-722.	6.2	32
187	Palladium-Catalyzed [3+2] Intramolecular Cycloaddition of Alk-5-ynylidenecyclopropanes:Â A Rapid, Practical Approach to Bicyclo[3.3.0]octenes. Journal of the American Chemical Society, 2003, 125, 9282-9283.	6.6	102
188	A Theoretical Rationalization of the Asymmetric Induction in Sulfinyl-Directed [5C + 2C] Intramolecular Cycloadditions. Journal of Organic Chemistry, 2003, 68, 9780-9786.	1.7	18
189	Synthesis of Fused Oxabicyclic Systems by Metal-Catalyzed Intramolecular Addition of 1,3-Cycloalkyldiones to Alkynes. Organic Letters, 2003, 5, 1975-1977.	2.4	59
190	From transcription factors to designed sequence-specific DNA-binding peptides. Chemical Society Reviews, 2003, 32, 338-349.	18.7	99
191	Atom-Efficient Assembly of 1,5-Oxygen-Bridged Medium-Sized Carbocycles by Sequential Combination of a Ru-Catalyzed Alkyneâ''Alkene Coupling and aPrins-Type Cyclization. Journal of the American Chemical Society, 2002, 124, 4218-4219.	6.6	51
192	Stereoselective Synthesis of Highly Functionalized 1,5-Oxa-Bridged Cyclooctenes via a 3-Oxidopyryliuma^'Cyclocypropene Acetal Cycloaddition. Organic Letters, 2002, 4, 3987-3987.	2.4	1
193	A Sulfinyl-Directed Asymmetric [5C + 2C] Intramolecular Acetoxypyranoneâ^'Alkene Cycloaddition. Organic Letters, 2002, 4, 3683-3685.	2.4	31
194	Stereoselective Synthesis of Highly Functionalized 1,5-Oxa-Bridged Cyclooctenes via a 3-Oxidopyryliumâ^'Cyclocypropene Acetal Cycloaddition. Organic Letters, 2002, 4, 3091-3094.	2.4	24
195	A Practical Route to Enantiopure, Highly Functionalized Seven-Membered Carbocycles and Tetrahydrofurans: Concise Synthesis of (+)-Nemorensic Acid. Chemistry - A European Journal, 2002, 8, 884-899.	1.7	43
196	A Practical Route to Enantiopure, Highly Functionalized Seven-Membered Carbocycles and Tetrahydrofurans: Concise Synthesis of (+)-Nemorensic Acid. Chemistry - A European Journal, 2002, 8, 1512-1512.	1.7	1
197	Synthesis of Eight- and Nine-Membered Carbocycles through a Ring-Closing Metathesis/Ring Fragmentation Strategy: A Rapid and Versatile Approach to Bicyclo[6.4.0]- and Bicyclo[7.4.0]alkene Ring Systems. Chemistry - A European Journal, 2002, 8, 2923.	1.7	35
198	Synthesis of Eight―and Nineâ€Membered Carbocycles Through a Ringâ€Closing Metathesis/Ring Fragmentation Strategy: A Rapid and Versatile Approach to Bicyclo[6.4.0]―and Bicyclo[7.4.0]alkene Ring Systems ChemInform, 2002, 33, 98-98.	0.1	0

#	Article	IF	Citations
199	Reversal of Stereoselectivity in [5 + 2] Pyroneâ^'Alkene Cycloadditions Using a Sulfoxide-to-Sulfoximine Switch. Enantiodivergent Synthesis of 8-Oxabicyclo[3.2.1]octane Systems. Organic Letters, 2001, 3, 623-625.	2.4	20
200	Construction of Bridged Polycyclic Systems via Radical Cyclizations. Uncovering of a Novel Carbocyclizationâ°'Ring Expansion Sequence. Organic Letters, 2001, 3, 1181-1183.	2.4	24
201	Design and Synthesis of a Peptide That Binds Specific DNA Sequences through Simultaneous Interaction in the Major and in the Minor Groove. Angewandte Chemie - International Edition, 2001, 40, 4723-4725.	7.2	54
202	A Light-Modulated Sequence-Specific DNA-Binding Peptide. Angewandte Chemie - International Edition, 2000, 39, 3104-3107.	7.2	95
203	Tandem Organolithium Addition/Oxa-Bridge Opening of 8-Oxa[3.2.1]bicyclic Pyrone-Alkene Adducts. Synthesis, 2000, 2000, 980-984.	1.2	10
204	Unmasking the $6,7,5$ -Tricarbocyclic Frame of $[5+2]/[4+2]$ Pyroneâ^'Alkene Cycloadducts. Journal of Organic Chemistry, 2000, $65,2528-2531$.	1.7	17
205	An Expeditious Route to Eight- and Nine-Membered Carbocycles Based on a RCM-Ring Fragmentation Strategyâ€. Organic Letters, 2000, 2, 3209-3212.	2.4	24
206	Sulfinyl-Directed Diastereoselective [5 + 2] Pyroneâ^Alkene Cycloadditions:  A Practical Route to Enantiopure 8-Oxabicyclo[3.2.1]octane Derivatives. Organic Letters, 2000, 2, 1005-1007.	2.4	31
207	An Fmoc solid-phase approach to linear polypyrrole-peptide conjugates. Tetrahedron Letters, 1999, 40, 3621-3624.	0.7	16
208	A practical approach to orthogonally connected oligopyrrole-peptide conjugates. Tetrahedron Letters, 1999, 40, 3625-3628.	0.7	12
209	Straightforward Construction of Fused 6,7,5-Tricarbocyclic Systems by Tandem [5 + 2]/[4 + 2] Cycloadditions. Journal of Organic Chemistry, 1999, 64, 966-970.	1.7	27
210	[$5+2$] Pyroneâ^Alkene Cycloaddition Approach to Tetrahydrofurans. Expeditious Synthesis of ($\hat{A}\pm$)-Nemorensic Acid. Journal of Organic Chemistry, 1999, 64, 4560-4563.	1.7	43
211	The [5+2] cycloaddition chemistry of \hat{l}^2 -alkoxy- \hat{l}^3 -pyrones. Advances in Cycloaddition, 1999, , 1-54.	0.5	27
212	A paclitaxel analogue with a 2(3â†'20)abeotaxane skeleton: Synthesis and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 273-276.	1.0	6
213	A New [5+2] Annulation Method for the Synthesis of 8-Oxabicyclo[3.2.1]octanes from Pyrones. Synlett, 1997, 1, 81-82.	1.0	8
214	Alkenylzinc-Mediated Approach to the Vitamin D Skeleton. Application to the Synthesis of 6-Methyl Analogs of Vitamin and Previtamin D. Journal of Organic Chemistry, 1997, 62, 6353-6358.	1.7	26
215	A Practical Approach tocis-2,5-Disubstituted Tetrahydrofurans and O-Bridged Medium-Sized Carbocycles from [5 + 2] Pyroneâ^'Alkene Cycloadducts. Journal of Organic Chemistry, 1997, 62, 8620-8621.	1.7	55
216	Use of a sulfinyl tether to control diastereofacial selectivity in [5C + 2C] pyrone-alkene cycloadditions. Tetrahedron Letters, 1997, 38, 5885-5886.	0.7	16

#	Article	IF	CITATIONS
217	3-Hydroxy-4-pyrones as Precursors of 4-Methoxy-3-oxidopyridinium Ylides. An Expeditious Entry to Highly Substituted 8-Azabicyclo[3.2.1]octanes. Journal of Organic Chemistry, 1996, 61, 6114-6120.	1.7	30
218	A chemoenzymatic synthesis of a-ring key-intermediates for $1\hat{l}_{\pm}$,25-dihydroxyvitamin d3 and analogues. Tetrahedron Letters, 1995, 36, 9023-9026.	0.7	37
219	A short, flexible approach to vitamin D3 analogues with modified side chains. Tetrahedron Letters, 1994, 35, 275-278.	0.7	27
220	Temporary tethering strategies for $[5 + 2]$ pyrone-alkene cycloadditions. Journal of Organic Chemistry, 1993, 58, 5585-5586.	1.7	52
221	Template-directed interference footprinting of protein-thymine contacts. Journal of the American Chemical Society, 1993, 115, 373-374.	6.6	24
222	A novel entry to the vitamin D triene system. Tetrahedron Letters, 1992, 33, 7589-7592.	0.7	16
223	A short, efficient route to 1-hydroxylated vitamin D ring A fragments. Tetrahedron Letters, 1992, 33, 4365-4368.	0.7	25
224	Synthesis of 1α,25-dihydroxy-19-norprevitamin D3. Tetrahedron Letters, 1992, 33, 5445-5448.	0.7	21
225	Preparation and cycloadditions of a 4-methoxy-3-oxidopyrylium ylid: a reagent for the synthesis of highly substituted seven-membered rings and tetrahydrofurans. Tetrahedron Letters, 1992, 33, 2115-2118.	0.7	68
226	Studies on tumor promoters. 11. A new [5+2] cycloaddition method and its application to the synthesis of BC ring precursors of phorboids. Journal of Organic Chemistry, 1991, 56, 6267-6269.	1.7	85
227	A short, flexible route to vitamin D metabolites and their side chain analogues. Tetrahedron Letters, 1991, 32, 2813-2816.	0.7	36
228	Palladium-catalysed coupling of vinyl triflates with enynes and its application to the synthesis of $1\hat{1}\pm,25$ -dihydroxyvitamin D3. Tetrahedron, 1991, 47, 3485-3498.	1.0	82
229	Palladium-catalyzed synthesis of dienynes related to $1\hat{l}\pm,25$ -dihydroxyvitamin D3. Tetrahedron Letters, 1988, 29, 1203-1206.	0.7	42
230	An improved synthesis of 1α, 25-dihydroxyvitamin D A synthons. Tetrahedron Letters, 1987, 28, 2099-2102.	0.7	49
231	Studies on the synthesis of side-chain hydroxylated metabolites of vitamin D. 3. Synthesis of 25-ketovitamin D3 and 25-hydroxyvitamin D3. Journal of Organic Chemistry, 1986, 51, 1269-1272.	1.7	48
232	Transitionâ€Metalâ€Catalyzed Annulations Involving the Activation of C(sp3)â^'H Bonds. Angewandte Chemie, 0, , .	1.6	4
233	Synthesis of terpyridine-modified peptides. Protocol Exchange, 0, , .	0.3	0
234	Palladiumâ€Catalyzed Tandem Cycloisomerization/Crossâ€Coupling of Carbonyl―and Imineâ€Tethered Alkylidenecyclopropanes. Angewandte Chemie, 0, , .	1.6	2

#	Article	IF	CITATIONS
235	Selective recognition of A/T-rich DNA 3-way junctions with a three-fold symmetric tripeptide. Chemical Communications, 0 , , .	2.2	5