Navpreet Kaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6123097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methyl (–CH ₃)-terminated ZnO nanowires for selective acetone detection: a novel approach toward sensing performance enhancement <i>via</i> self-assembled monolayer. Journal of Materials Chemistry A, 2022, 10, 3178-3189.	5.2	9
2	Materials Engineering Strategies to Control Metal Oxides Nanowires Sensing Properties. Advanced Materials Interfaces, 2022, 9, .	1.9	9
3	Novel Christmas Branched Like NiO/NiWO ₄ /WO ₃ (p–p–n) Nanowire Heterostructures for Chemical Sensing. Advanced Functional Materials, 2021, 31, 2104416.	7.8	32
4	SnO ₂ â€SiO ₂ 1D Coreâ€Shell Nanowires Heterostructures for Selective Hydrogen Sensing. Advanced Materials Interfaces, 2021, 8, 2100939.	1.9	6
5	One Dimensional ZnO Nanostructures: Growth and Chemical Sensing Performances. Nanomaterials, 2020, 10, 1940.	1.9	27
6	1D Titanium Dioxide: Achievements in Chemical Sensing. Materials, 2020, 13, 2974.	1.3	33
7	SAM Functionalized ZnO Nanowires for Selective Acetone Detection: Optimized Surface Specific Interaction Using APTMS and GLYMO Monolayers. Advanced Functional Materials, 2020, 30, 2003217.	7.8	46
8	One-Dimensional Nanostructured Oxide Chemoresistive Sensors. Langmuir, 2020, 36, 6326-6344.	1.6	87
9	UV-Enhanced Humidity Sensing of Chitosan–SnO2 Hybrid Nanowires. Nanomaterials, 2020, 10, 329.	1.9	13
10	The role of self-assembled monolayers in electronic devices. Journal of Materials Chemistry C, 2020, 8, 3938-3955.	2.7	127
11	Chemical Gas Sensors Studied at SENSOR Lab, Brescia (Italy): From Conventional to Energy-Efficient and Biocompatible Composite Structures. Sensors, 2020, 20, 579.	2.1	7
12	Toward Optimized Radial Modulation of the Space-Charge Region in One-Dimensional SnO ₂ –NiO Core–Shell Nanowires for Hydrogen Sensing. ACS Applied Materials & Interfaces, 2020, 12, 4594-4606.	4.0	55
13	Shelf Life Study of NiO Nanowire Sensors for NO2 Detection. Electronic Materials Letters, 2019, 15, 743-749.	1.0	14
14	Integration of VLS-Grown WO ₃ Nanowires into Sensing Devices for the Detection of H ₂ S and O ₃ . ACS Omega, 2019, 4, 16336-16343.	1.6	28
15	Branch-like NiO/ZnO heterostructures for VOC sensing. Sensors and Actuators B: Chemical, 2018, 262, 477-485.	4.0	110
16	"Metal oxide -based heterostructures for gas sensors― A review. Analytica Chimica Acta, 2018, 1039, 1-23.	2.6	270
17	Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors. Beilstein Journal of Nanotechnology, 2017, 8, 1205-1217.	1.5	29
18	Metal Oxide Nanowire Preparation and Their Integration into Chemical Sensing Devices at the SENSOR Lab in Brescia. Sensors, 2017, 17, 1000.	2.1	21

#	Article	IF	CITATIONS
19	NiO/ZnO Nanowire-heterostructures by Vapor Phase Growth for Gas Sensing. Procedia Engineering, 2016, 168, 1140-1143.	1.2	7
20	Nickel Oxide Nanowires Growth by VLS Technique for Gas Sensing Application. Procedia Engineering, 2015, 120, 760-763.	1.2	13