Alexander S Shaplov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6122952/publications.pdf

Version: 2024-02-01

109311 123420 3,969 88 35 61 citations g-index h-index papers 91 91 91 3804 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tunning CO2 Separation Performance of Ionic Liquids through Asymmetric Anions. Molecules, 2022, 27, 413.	3.8	3
2	Self-assembly of Li single-ion-conducting block copolymers for improved conductivity and viscoelastic properties. Electrochimica Acta, 2022, 413, 140126.	5.2	11
3	Structure conformational and rheological characterisation of alfalfa seed (Medicago sativa L.) galactomannan. Carbohydrate Polymers, 2021, 256, 117394.	10.2	15
4	Effects of repeat unit charge density on the physical and electrochemical properties of novel heterocationic poly(ionic liquid)s. New Journal of Chemistry, 2021, 45, 53-65.	2.8	8
5	Reinforcement of Styrene Butadiene Rubber Employing Poly(isobornyl methacrylate) (PIBOMA) as High Tg Thermoplastic Polymer. Polymers, 2021, 13, 1626.	4.5	6
6	Unique Carbonate-Based Single Ion Conducting Block Copolymers Enabling High-Voltage, All-Solid-State Lithium Metal Batteries. Macromolecules, 2021, 54, 6911-6924.	4.8	39
7	Cryotropic gel-forming capacity of alfalfa (Medicago sativa L.) and fenugreek (Trigonella foenum) Tj ETQq $1\ 1$	0.784314 rgB ⁻	Г <u>/</u> Overlock 1
8	Structure conformation, physicochemical and rheological properties of flaxseed gums extracted under alkaline and acidic conditions. International Journal of Biological Macromolecules, 2021, 192, 1217-1230.	7. 5	19
9	Li Coordination of a Novel Asymmetric Anion in Ionic Liquid-in-Li Salt Electrolytes. Journal of Physical Chemistry B, 2020, 124, 861-870.	2.6	44
10	Poly(diallyldimethylammonium) based poly(ionic liquid) di- and triblock copolymers by PISA as matrices for ionogel membranes. Polymer Chemistry, 2020, 11, 1481-1488.	3.9	17
11	Tuning the miscibility of water in imide-based ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 25236-25242.	2.8	6
12	Ionic Polyureas—A Novel Subclass of Poly(Ionic Liquid)s for CO2 Capture. Membranes, 2020, 10, 240.	3.0	7
13	Poly(ionic liquid)–lonic Liquid Membranes with Fluorosulfonyl-Derived Anions: Characterization and Biohydrogen Separation. ACS Sustainable Chemistry and Engineering, 2020, 8, 7087-7096.	6.7	21
14	Expanding the chemistry of singleâ€ion conducting poly(ionic liquid)s with polyhedral boron anions. Polymer International, 2019, 68, 1570-1579.	3.1	12
15	Metathesis Polymerization in Ionic Media. Polymer Science - Series C, 2019, 61, 2-16.	1.7	8
16	Ionic Liquid with Silyl Substituted Cation: Thermophysical and CO 2 /N 2 Permeation Properties. Israel Journal of Chemistry, 2019, 59, 852-865.	2.3	4
17	Influence of Cationic Poly(ionic liquid) Architecture on the Ion Dynamics in Polymer Gel Electrolytes. Journal of Physical Chemistry C, 2019, 123, 13225-13235.	3.1	19
18	Neat ionic liquids versus ionic liquid mixtures: a combination of experimental data and molecular simulation. Physical Chemistry Chemical Physics, 2019, 21, 23305-23309.	2.8	12

#	Article	IF	CITATIONS
19	Polyimides as cathodic materials in lithium batteries: Effect of the chemical structure of the diamine monomer. Journal of Polymer Science Part A, 2018, 56, 714-723.	2.3	25
20	Kinetic Features of Photoinduced Radical (Co)Polymerization of Ionic Monomers. Polymer Science - Series B, 2018, 60, 760-771.	0.8	3
21	Synthesis of novel families of conductive cationic poly(ionic liquid)s and their application in all-polymer flexible pseudo-supercapacitors. Electrochimica Acta, 2018, 281, 777-788.	5.2	26
22	Design of ionic liquid like monomers towards easy-accessible single-ion conducting polymer electrolytes. European Polymer Journal, 2018, 107, 218-228.	5.4	35
23	All-solid state ionic actuators based on polymeric ionic liquids and electronic conducting polymers. , 2018, , .		2
24	Influence of anion structure on ion dynamics in polymer gel electrolytes composed of poly(ionic) Tj ETQq0 0 0 rg	gBT_/Qverlo	ock 10 Tf 50 !
25	Poly(ionic liquid)-based polyurethanes having imidazolium, ammonium, morpholinium or pyrrolidinium cations. High Performance Polymers, 2017, 29, 691-703.	1.8	11
26	Single Ion Conducting Polymer Electrolytes Based On Versatile Polyurethanes. Electrochimica Acta, 2017, 241, 526-534.	5.2	86
27	Ionic Polyurethanes as a New Family of Poly(ionic liquid)s for Efficient CO ₂ Capture. Macromolecules, 2017, 50, 2814-2824.	4.8	49
28	Exploring the effect of fluorinated anions on the CO ₂ /N ₂ separation of supported ionic liquid membranes. Physical Chemistry Chemical Physics, 2017, 19, 28876-28884.	2.8	25
29	Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries. Journal of Power Sources, 2017, 364, 191-199.	7.8	130
30	lonic liquids with anions based on fluorosulfonyl derivatives: from asymmetrical substitutions to a consistent force field model. Physical Chemistry Chemical Physics, 2017, 19, 29617-29624.	2.8	49
31	Effect of Viscosity of Dimethacrylate Ester-Based Compositions on the Kinetics of Their Photopolymerization in Presence of o-Quinone Photoinitiators. Polymer Science - Series B, 2017, 59, 665-673.	0.8	8
32	Probing the effect of anion structure on the physical properties of cationic 1,2,3â€triazoliumâ€based poly(ionic liquid)s. Journal of Polymer Science Part A, 2016, 54, 2191-2199.	2.3	21
33	Poly(ionic liquid)s: Synthesis, properties, and application. Polymer Science - Series B, 2016, 58, 73-142.	0.8	95
34	Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 10350-10359.	8.0	251
35	Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature. ACS Energy Letters, 2016, 1, 678-682.	17.4	270
36	A New Volume-Based Approach for Predicting Thermophysical Behavior of Ionic Liquids and Ionic Liquid Crystals. Journal of the American Chemical Society, 2016, 138, 10076-10079.	13.7	69

#	Article	IF	Citations
37	Turning into poly(ionic liquid)s as a tool for polyimide modification: synthesis, characterization and CO ₂ separation properties. Polymer Chemistry, 2016, 7, 580-591.	3.9	81
38	New Polyimides As Electrode Materials for Li-Ion Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
39	Single-Ion Block and Random Copoly(ionic liquid)s As Innovative Electrolytes for All-Solid State Li Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
40	Unconventional poly(ionic liquid)s combining motionless main chain 1,2,3-triazolium cations and high ionic conductivity. Polymer Chemistry, 2015, 6, 4299-4308.	3.9	44
41	Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s. Electrochimica Acta, 2015, 175, 18-34.	5.2	371
42	lonic semi-interpenetrating networks as a new approach for highly conductive and stretchable polymer materials. Journal of Materials Chemistry A, 2015, 3, 2188-2198.	10.3	47
43	Ionic conductivity and molecular dynamic behavior in supramolecular ionic networks; the effect of lithium salt addition. Electrochimica Acta, 2015, 175, 74-79.	5.2	13
44	New family of highly conductive and low viscous ionic liquids with asymmetric 2,2,2-trifluoromethylsulfonyl-N-cyanoamide anion. Electrochimica Acta, 2015, 175, 254-260.	5.2	26
45	Supramolecular ionic networks with superior thermal and transport properties based on novel delocalized di-anionic compounds. Journal of Materials Chemistry A, 2015, 3, 2338-2343.	10.3	22
46	New membrane materials based on crosslinked poly(ethylene glycols) and ionic liquids for separation of gas mixtures containing CO2. Polymer Science - Series B, 2014, 56, 900-908.	0.8	8
47	Solid-state electrolytes based on ionic network polymers. Polymer Science - Series B, 2014, 56, 164-177.	0.8	22
48	A first truly all-solid state organic electrochromic device based on polymeric ionic liquids. Chemical Communications, 2014, 50, 3191-3193.	4.1	68
49	Truly solid state electrochromic devices constructed from polymeric ionic liquids as solid electrolytes and electrodes formulated by vapor phase polymerization of 3,4-ethylenedioxythiophene. Polymer, 2014, 55, 3385-3396.	3.8	57
50	Synthesis and properties of polymeric analogs of ionic liquids. Polymer Science - Series B, 2013, 55, 122-138.	0.8	46
51	Gas separation characteristics of new membrane materials based on poly(ethylene glycol)-crosslinked polymers and ionic liquids. Petroleum Chemistry, 2012, 52, 494-498.	1.4	21
52	Thiolâ€Ene Click Chemistry as a Tool for a Novel Family of Polymeric Ionic Liquids. Macromolecular Chemistry and Physics, 2012, 213, 1359-1369.	2.2	19
53	Design and synthesis of new anionic "polymeric ionic liquids―with high charge delocalization. Polymer Chemistry, 2011, 2, 2609.	3.9	96
54	Polymeric Ionic Liquids: Comparison of Polycations and Polyanions. Macromolecules, 2011, 44, 9792-9803.	4.8	84

#	Article	IF	Citations
55	New ionic liquids with hydrolytically stable anions as alternatives to hexafluorophosphate and tetrafluoroborate salts in the free radical polymerization and preparation of ion-conducting composites. Polymer Journal, 2011, 43, 126-135.	2.7	28
56	Bis(trifluoromethylsulfonyl)amide based "polymeric ionic liquidsâ€. Synthesis, purification and peculiarities of structure–properties relationships. Electrochimica Acta, 2011, 57, 74-90.	5.2	84
57	Polycaproamide films containing ionic liquids: Microstructure and properties. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 211-216.	0.6	O
58	Polymerization of the new doubleâ€charged monomer bisâ€1,3(<i>N</i> , <i>N</i> , <i>N</i> ,eximethylammonium dicyanamide)â€2â€propylmethacrylate and ionic conductivity of the novel polyelectrolytes. Polymers for Advanced Technologies, 2011, 22, 448-457.	3.2	18
59	Crystal packing and reactivity of di(meth)acrylates of some derivatives of hydroquinone and pyrocatechol in melts. Polymer Science - Series B, 2010, 52, 203-213.	0.8	2
60	Polymers based on ionic monomers with side phosphonate groups. Polymer Science - Series B, 2010, 52, 316-326.	0.8	21
61	Macroinitiators of controlled free-radical polymerization of methyl methacrylate that are based on the tributyl boron-naphthoquinone system. Polymer Science - Series B, 2010, 52, 520-527.	0.8	3
62	Influence of ionic liquid anion nature on the properties of Eu-containing luminescent materials. Optical Materials, 2010, 32, 707-710.	3.6	8
63	Photopolymerization of poly(ethylene glycol) dimethacrylates: The influence of ionic liquids on the formulation and the properties of the resultant polymer materials. Journal of Polymer Science Part A, 2010, 48, 2388-2409.	2.3	36
64	Synthesis and characterization of grafted copolymers of aromatic polyimides and $\hat{l}\mu\hat{a}\in\hat{c}$ aprolactam. Journal of Applied Polymer Science, 2009, 114, 577-586.	2.6	10
65	Ionic IPNs as novel candidates for highly conductive solid polymer electrolytes. Journal of Polymer Science Part A, 2009, 47, 4245-4266.	2.3	56
66	Electrochemical supercapacitor with electrolyte based on an ionic liquid. Russian Journal of Electrochemistry, 2009, 45, 949-950.	0.9	7
67	IR and X-ray Study of Polymorphism in 1-Alkyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imides. Journal of Physical Chemistry B, 2009, 113, 9538-9546.	2.6	82
68	lonic liquids as catalytic additives for the acceleration of the photopolymerization of poly(ethylene) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
69	Conductive Polymer Electrolytes Derived from Poly(norbornene)s with Pendant Ionic Imidazolium Moieties. Macromolecular Chemistry and Physics, 2008, 209, 40-51.	2.2	62
70	Novel phosphonated poly(1,3,4-oxadiazole)s: Synthesis in ionic liquid and characterization. Reactive and Functional Polymers, 2008, 68, 208-224.	4.1	25
71	Thermochemical properties of 1-butyl-3-methylimidazolium nitrate. Thermochimica Acta, 2008, 474, 25-31.	2.7	72
72	A novel facile synthesis of carbamoylmethylphosphine oxides in ionic liquids. Tetrahedron Letters, 2008, 49, 1641-1644.	1.4	13

#	Article	IF	CITATIONS
73	Free-radical polymerization of C-vinyltetrazoles: Effect of the nature of ionic solvents. Polymer Science - Series B, 2008, 50, 193-197.	0.8	3
74	Cyclopolymerization of $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$. Dipropargylamines and $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$. Dipropargyl Ammonium Salts. Macromolecules, 2008, 41, 1919-1928.	4.8	67
75	Thermodynamic properties of 1-alkyl-3-methylimidazolium bromide ionic liquids. Journal of Chemical Thermodynamics, 2007, 39, 158-166.	2.0	117
76	The influence of ionic liquid's nature on free radical polymerization of vinyl monomers and ionic conductivity of the obtained polymeric materials. Polymers for Advanced Technologies, 2007, 18, 50-63.	3.2	92
77	Synthesis and ionic conductivity of polymer ionic liquids. Polymer Science - Series A, 2007, 49, 256-261.	1.0	29
78	Ring-Opening Metathesis Polymerization (ROMP) in Ionic Liquids:  Scope and Limitations. Macromolecules, 2006, 39, 7821-7830.	4.8	94
79	"One-pot―synthesis of aromatic poly(1,3,4-oxadiazole)s in novel solvents—ionic liquids. Journal of Polymer Science Part A, 2006, 44, 380-394.	2.3	44
80	Ionic-liquid-promoted Michaelis–Arbuzov rearrangement. Tetrahedron Letters, 2006, 47, 7645-7648.	1.4	40
81	Crystal structure of 1,3-dialkyldiazolium bromides. Russian Chemical Bulletin, 2006, 55, 1989-1999.	1.5	28
82	Extremely short C–Hâ√F contacts in the 1-methyl-3-propyl-imidazolium SiF6—the reason for ionic "liquidâ€ unexpected high melting point. CrystEngComm, 2005, 7, 53-56.	2.6	49
83	Cocrystal of an Ionic Liquid with Organic Molecules as a Mimic of Ionic Liquid Solution. Crystal Growth and Design, 2005, 5, 337-340.	3.0	27
84	Long-awaited polymorphic modification of triphenyl phosphite. CrystEngComm, 2005, 7, 465.	2.6	16
85	Implementation of ionic liquids as activating media for polycondensation processes. Polymer, 2004, 45, 5031-5045.	3.8	105
86	Direct polycondensation in ionic liquids. European Polymer Journal, 2004, 40, 2065-2075.	5.4	98
87	Ionic Liquids as Novel Reaction Media for the Synthesis of Condensation Polymers. Macromolecular Rapid Communications, 2002, 23, 676-680.	3.9	130
88	Synthesis of Polymers in Ionic Liquids as New Reaction Media. Doklady Chemistry, 2001, 381, 353-356.	0.9	5